基础题,直线间关系
#include <iostream> #include <math.h> #include <iomanip> #define eps 1e-8 #define zero(x) (((x)>0?(x):-(x))<eps) #define pi acos(-1.0) struct point { double x, y; }; struct line { point a, b; }; struct point3 { double x, y, z; }; struct line3 { point3 a, b; }; struct plane3 { point3 a, b, c; }; //计算cross product (P1-P0)x(P2-P0) double xmult(point p1, point p2, point p0) { return (p1.x - p0.x)*(p2.y - p0.y) - (p2.x - p0.x)*(p1.y - p0.y); } //计算dot product (P1-P0).(P2-P0) double dmult(point p1, point p2, point p0) { return (p1.x - p0.x)*(p2.x - p0.x) + (p1.y - p0.y)*(p2.y - p0.y); } //计算cross product U . V point3 xmult(point3 u, point3 v) { point3 ret; ret.x = u.y*v.z - v.y*u.z; ret.y = u.z*v.x - u.x*v.z; ret.z = u.x*v.y - u.y*v.x; return ret; } //计算dot product U . V double dmult(point3 u, point3 v) { return u.x*v.x + u.y*v.y + u.z*v.z; } //两点距离 double distance(point p1, point p2) { return sqrt((p1.x - p2.x)*(p1.x - p2.x) + (p1.y - p2.y)*(p1.y - p2.y)); } //判三点共线 bool dots_inline(point p1, point p2, point p3) { return zero(xmult(p1, p2, p3)); } //判点是否在线段上,包括端点 bool dot_online_in(point p, line l) { return zero(xmult(p, l.a, l.b)) && (l.a.x - p.x)*(l.b.x - p.x) < eps && (l.a.y - p.y)*(l.b.y - p.y) < eps; } //判点是否在线段上,不包括端点 bool dot_online_ex(point p, line l) { return dot_online_in(p, l) && (!zero(p.x - l.a.x) || !zero(p.y - l.a.y)) && (!zero(p.x - l.b.x) || !zero(p.y - l.b.y)); } //判两点在线段同侧,点在线段上返回0 bool same_side(point p1, point p2, line l) { return xmult(l.a, p1, l.b)*xmult(l.a, p2, l.b) > eps; } //判两点在线段异侧,点在线段上返回0 bool opposite_side(point p1, point p2, line l) { return xmult(l.a, p1, l.b)*xmult(l.a, p2, l.b) < -eps; } //判两直线平行 bool parallel(line u, line v) { return zero((u.a.x - u.b.x)*(v.a.y - v.b.y) - (v.a.x - v.b.x)*(u.a.y - u.b.y)); } //判两直线垂直 bool perpendicular(line u, line v) { return zero((u.a.x - u.b.x)*(v.a.x - v.b.x) + (u.a.y - u.b.y)*(v.a.y - v.b.y)); } //判两线段相交,包括端点和部分重合 bool intersect_in(line u, line v) { if (!dots_inline(u.a, u.b, v.a) || !dots_inline(u.a, u.b, v.b)) return !same_side(u.a, u.b, v) && !same_side(v.a, v.b, u); return dot_online_in(u.a, v) || dot_online_in(u.b, v) || dot_online_in(v.a, u) || dot_online_in(v.b, u); } //判两线段相交,不包括端点和部分重合 bool intersect_ex(line u, line v) { return opposite_side(u.a, u.b, v) && opposite_side(v.a, v.b, u); } //计算两直线交点,注意事先判断直线是否平行! //线段交点请另外判线段相交(同时还是要判断是否平行!) point intersection(line u, line v) { point ret = u.a; double t = ((u.a.x - v.a.x)*(v.a.y - v.b.y) - (u.a.y - v.a.y)*(v.a.x - v.b.x)) / ((u.a.x - u.b.x)*(v.a.y - v.b.y) - (u.a.y - u.b.y)*(v.a.x - v.b.x)); ret.x += (u.b.x - u.a.x)*t; ret.y += (u.b.y - u.a.y)*t; return ret; } point intersection(point u1, point u2, point v1, point v2) { point ret = u1; double t = ((u1.x - v1.x)*(v1.y - v2.y) - (u1.y - v1.y)*(v1.x - v2.x)) / ((u1.x - u2.x)*(v1.y - v2.y) - (u1.y - u2.y)*(v1.x - v2.x)); ret.x += (u2.x - u1.x)*t; ret.y += (u2.y - u1.y)*t; return ret; } //点到直线上的最近点 point ptoline(point p, line l) { point t = p; t.x += l.a.y - l.b.y, t.y += l.b.x - l.a.x; return intersection(p, t, l.a, l.b); } //点到直线距离 double disptoline(point p, line l) { return fabs(xmult(p, l.a, l.b)) / distance(l.a, l.b); } //点到线段上的最近点 point ptoseg(point p, line l) { point t = p; t.x += l.a.y - l.b.y, t.y += l.b.x - l.a.x; if (xmult(l.a, t, p)*xmult(l.b, t, p) > eps) return distance(p, l.a) < distance(p, l.b) ? l.a : l.b; return intersection(p, t, l.a, l.b); } //点到线段距离 double disptoseg(point p, line l) { point t = p; t.x += l.a.y - l.b.y, t.y += l.b.x - l.a.x; if (xmult(l.a, t, p)*xmult(l.b, t, p) > eps) return distance(p, l.a) < distance(p, l.b) ? distance(p, l.a) : distance(p, l.b); return fabs(xmult(p, l.a, l.b)) / distance(l.a, l.b); } //矢量V 以P 为顶点逆时针旋转angle 并放大scale 倍 point rotate(point v, point p, double angle, double scale) { point ret = p; v.x -= p.x, v.y -= p.y; p.x = scale*cos(angle); p.y = scale*sin(angle); ret.x += v.x*p.x - v.y*p.y; ret.y += v.x*p.y + v.y*p.x; return ret; } //计算三角形面积,输入三顶点 double area_triangle(point p1, point p2, point p3) { return fabs(xmult(p1, p2, p3)) / 2; } //计算三角形面积,输入三边长 double area_triangle(double a, double b, double c) { double s = (a + b + c) / 2; return sqrt(s*(s - a)*(s - b)*(s - c)); } //计算多边形面积,顶点按顺时针或逆时针给出 double area_polygon(int n, point* p) { double s1 = 0, s2 = 0; int i; for (i = 0; i < n; i++) s1 += p[(i + 1)%n].y*p[i].x, s2 += p[(i + 1)%n].y*p[(i + 2)%n].x; return fabs(s1 - s2) / 2; } //计算圆心角lat 表示纬度,-90<=w<=90,lng 表示经度 //返回两点所在大圆劣弧对应圆心角,0<=angle<=pi double angle(double lng1, double lat1, double lng2, double lat2) { double dlng = fabs(lng1 - lng2)*pi / 180; while (dlng >= pi + pi) dlng -= pi + pi; if (dlng > pi) dlng = pi + pi - dlng; lat1 *= pi / 180, lat2 *= pi / 180; return acos(cos(lat1)*cos(lat2)*cos(dlng) + sin(lat1)*sin(lat2)); } //计算距离,r 为球半径 double line_dist(double r, double lng1, double lat1, double lng2, double lat2) { double dlng = fabs(lng1 - lng2)*pi / 180; while (dlng >= pi + pi) dlng -= pi + pi; if (dlng > pi) dlng = pi + pi - dlng; lat1 *= pi / 180, lat2 *= pi / 180; return r*sqrt(2 - 2 * (cos(lat1)*cos(lat2)*cos(dlng) + sin(lat1)*sin(lat2))); } //计算球面距离,r 为球半径 inline double sphere_dist(double r, double lng1, double lat1, double lng2, double lat2) { return r*angle(lng1, lat1, lng2, lat2); } //外心 point circumcenter(point a, point b, point c) { line u, v; u.a.x = (a.x + b.x) / 2; u.a.y = (a.y + b.y) / 2; u.b.x = u.a.x - a.y + b.y; u.b.y = u.a.y + a.x - b.x; v.a.x = (a.x + c.x) / 2; v.a.y = (a.y + c.y) / 2; v.b.x = v.a.x - a.y + c.y; v.b.y = v.a.y + a.x - c.x; return intersection(u, v); } //内心 point incenter(point a, point b, point c) { line u, v; double m, n; u.a = a; m = atan2(b.y - a.y, b.x - a.x); n = atan2(c.y - a.y, c.x - a.x); u.b.x = u.a.x + cos((m + n) / 2); u.b.y = u.a.y + sin((m + n) / 2); v.a = b; m = atan2(a.y - b.y, a.x - b.x); n = atan2(c.y - b.y, c.x - b.x); v.b.x = v.a.x + cos((m + n) / 2); v.b.y = v.a.y + sin((m + n) / 2); return intersection(u, v); } //垂心 point perpencenter(point a, point b, point c) { line u, v; u.a = c; u.b.x = u.a.x - a.y + b.y; u.b.y = u.a.y + a.x - b.x; v.a = b; v.b.x = v.a.x - a.y + c.y; v.b.y = v.a.y + a.x - c.x; return intersection(u, v); } //重心 //到三角形三顶点距离的平方和最小的点 //三角形内到三边距离之积最大的点 point barycenter(point a, point b, point c) { line u, v; u.a.x = (a.x + b.x) / 2; u.a.y = (a.y + b.y) / 2; u.b = c; v.a.x = (a.x + c.x) / 2; v.a.y = (a.y + c.y) / 2; v.b = b; return intersection(u, v); } //费马点 //到三角形三顶点距离之和最小的点 point fermentpoint(point a, point b, point c) { point u, v; double step = fabs(a.x) + fabs(a.y) + fabs(b.x) + fabs(b.y) + fabs(c.x) + fabs(c.y); int i, j, k; u.x = (a.x + b.x + c.x) / 3; u.y = (a.y + b.y + c.y) / 3; while (step > 1e-10) { for (k = 0; k < 10; step /= 2, k++) { for (i = -1; i <= 1; i++) { for (j = -1; j <= 1; j++) { v.x = u.x + step*i; v.y = u.y + step*j; if (distance(u, a) + distance(u, b) + distance(u, c) > distance(v, a) + distance(v, b) + distance(v, c)) { u = v; } } } } } return u; } //矢量差 U - V point3 subt(point3 u, point3 v) { point3 ret; ret.x = u.x - v.x; ret.y = u.y - v.y; ret.z = u.z - v.z; return ret; } ///三维/// //取平面法向量 point3 pvec(plane3 s) { return xmult(subt(s.a, s.b), subt(s.b, s.c)); } point3 pvec(point3 s1, point3 s2, point3 s3) { return xmult(subt(s1, s2), subt(s2, s3)); } //两点距离,单参数取向量大小 double distance(point3 p1, point3 p2) { return sqrt((p1.x - p2.x)*(p1.x - p2.x) + (p1.y - p2.y)*(p1.y - p2.y) + (p1.z - p2.z)*(p1.z - p2.z)); } //向量大小 double vlen(point3 p) { return sqrt(p.x*p.x + p.y*p.y + p.z*p.z); } //判三点共线 bool dots_inline(point3 p1, point3 p2, point3 p3) { return vlen(xmult(subt(p1, p2), subt(p2, p3))) < eps; } //判四点共面 bool dots_onplane(point3 a, point3 b, point3 c, point3 d) { return zero(dmult(pvec(a, b, c), subt(d, a))); } //判点是否在线段上,包括端点和共线 bool dot_online_in(point3 p, line3 l) { return zero(vlen(xmult(subt(p, l.a), subt(p, l.b)))) && (l.a.x - p.x)*(l.b.x - p.x) < eps && (l.a.y - p.y)*(l.b.y - p.y) < eps && (l.a.z - p.z)*(l.b.z - p.z) < eps; } //判点是否在线段上,不包括端点 bool dot_online_ex(point3 p, line3 l) { return dot_online_in(p, l) && (!zero(p.x - l.a.x) || !zero(p.y - l.a.y) || !zero(p.z - l.a.z)) && (!zero(p.x - l.b.x) || !zero(p.y - l.b.y) || !zero(p.z - l.b.z)); } //判点是否在空间三角形上,包括边界,三点共线无意义 bool dot_inplane_in(point3 p, plane3 s) { return zero(vlen(xmult(subt(s.a, s.b), subt(s.a, s.c))) - vlen(xmult(subt(p, s.a), subt(p, s.b))) - vlen(xmult(subt(p, s.b), subt(p, s.c))) - vlen(xmult(subt(p, s.c), subt(p, s.a)))); } //判点是否在空间三角形上,不包括边界,三点共线无意义 bool dot_inplane_ex(point3 p, plane3 s) { return dot_inplane_in(p, s) && vlen(xmult(subt(p, s.a), subt(p, s.b))) > eps && vlen(xmult(subt(p, s.b), subt(p, s.c))) > eps && vlen(xmult(subt(p, s.c), subt(p, s.a))) > eps; } //判两点在线段同侧,点在线段上返回0,不共面无意义 bool same_side(point3 p1, point3 p2, line3 l) { return dmult(xmult(subt(l.a, l.b), subt(p1, l.b)), xmult(subt(l.a, l.b), subt(p2, l.b))) > eps; } //判两点在线段异侧,点在线段上返回0,不共面无意义 bool opposite_side(point3 p1, point3 p2, line3 l) { return dmult(xmult(subt(l.a, l.b), subt(p1, l.b)), xmult(subt(l.a, l.b), subt(p2, l.b))) < -eps; } //判两点在平面同侧,点在平面上返回0 bool same_side(point3 p1, point3 p2, plane3 s) { return dmult(pvec(s), subt(p1, s.a))*dmult(pvec(s), subt(p2, s.a)) > eps; } bool same_side(point3 p1, point3 p2, point3 s1, point3 s2, point3 s3) { return dmult(pvec(s1, s2, s3), subt(p1, s1))*dmult(pvec(s1, s2, s3), subt(p2, s1)) > eps; } //判两点在平面异侧,点在平面上返回0 bool opposite_side(point3 p1, point3 p2, plane3 s) { return dmult(pvec(s), subt(p1, s.a))*dmult(pvec(s), subt(p2, s.a)) < -eps; } bool opposite_side(point3 p1, point3 p2, point3 s1, point3 s2, point3 s3) { return dmult(pvec(s1, s2, s3), subt(p1, s1))*dmult(pvec(s1, s2, s3), subt(p2, s1)) < -eps; } //判两直线平行 bool parallel(line3 u, line3 v) { return vlen(xmult(subt(u.a, u.b), subt(v.a, v.b))) < eps; } //判两平面平行 bool parallel(plane3 u, plane3 v) { return vlen(xmult(pvec(u), pvec(v))) < eps; } //判直线与平面平行 bool parallel(line3 l, plane3 s) { return zero(dmult(subt(l.a, l.b), pvec(s))); } bool parallel(point3 l1, point3 l2, point3 s1, point3 s2, point3 s3) { return zero(dmult(subt(l1, l2), pvec(s1, s2, s3))); } //判两直线垂直 bool perpendicular(line3 u, line3 v) { return zero(dmult(subt(u.a, u.b), subt(v.a, v.b))); } //判两平面垂直 bool perpendicular(plane3 u, plane3 v) { return zero(dmult(pvec(u), pvec(v))); } //判直线与平面平行 bool perpendicular(line3 l, plane3 s) { return vlen(xmult(subt(l.a, l.b), pvec(s))) < eps; } //判两线段相交,包括端点和部分重合 bool intersect_in(line3 u, line3 v) { if (!dots_onplane(u.a, u.b, v.a, v.b)) return 0; if (!dots_inline(u.a, u.b, v.a) || !dots_inline(u.a, u.b, v.b)) return !same_side(u.a, u.b, v) && !same_side(v.a, v.b, u); return dot_online_in(u.a, v) || dot_online_in(u.b, v) || dot_online_in(v.a, u) || dot_online_in(v.b, u); } //判两线段相交,不包括端点和部分重合 bool intersect_ex(line3 u, line3 v) { return dots_onplane(u.a, u.b, v.a, v.b) && opposite_side(u.a, u.b, v) && opposite_side(v.a, v.b, u); } //判线段与空间三角形相交,包括交于边界和(部分)包含 bool intersect_in(line3 l, plane3 s) { return !same_side(l.a, l.b, s) && !same_side(s.a, s.b, l.a, l.b, s.c) && !same_side(s.b, s.c, l.a, l.b, s.a) && !same_side(s.c, s.a, l.a, l.b, s.b); } //判线段与空间三角形相交,不包括交于边界和(部分)包含 bool intersect_ex(line3 l, plane3 s) { return opposite_side(l.a, l.b, s) && opposite_side(s.a, s.b, l.a, l.b, s.c) && opposite_side(s.b, s.c, l.a, l.b, s.a) && opposite_side(s.c, s.a, l.a, l.b, s.b); } //计算两直线交点,注意事先判断直线是否共面和平行! //线段交点请另外判线段相交(同时还是要判断是否平行!) point3 intersection(line3 u, line3 v) { point3 ret = u.a; double t = ((u.a.x - v.a.x)*(v.a.y - v.b.y) - (u.a.y - v.a.y)*(v.a.x - v.b.x)) / ((u.a.x - u.b.x)*(v.a.y - v.b.y) - (u.a.y - u.b.y)*(v.a.x - v.b.x)); ret.x += (u.b.x - u.a.x)*t; ret.y += (u.b.y - u.a.y)*t; ret.z += (u.b.z - u.a.z)*t; return ret; } //计算直线与平面交点,注意事先判断是否平行,并保证三点不共线! //线段和空间三角形交点请另外判断 point3 intersection(line3 l, plane3 s) { point3 ret = pvec(s); double t = (ret.x*(s.a.x - l.a.x) + ret.y*(s.a.y - l.a.y) + ret.z*(s.a.z - l.a.z)) / (ret.x*(l.b.x - l.a.x) + ret.y*(l.b.y - l.a.y) + ret.z*(l.b.z - l.a.z)); ret.x = l.a.x + (l.b.x - l.a.x)*t; ret.y = l.a.y + (l.b.y - l.a.y)*t; ret.z = l.a.z + (l.b.z - l.a.z)*t; return ret; } point3 intersection(point3 l1, point3 l2, point3 s1, point3 s2, point3 s3) { point3 ret = pvec(s1, s2, s3); double t = (ret.x*(s1.x - l1.x) + ret.y*(s1.y - l1.y) + ret.z*(s1.z - l1.z)) / (ret.x*(l2.x - l1.x) + ret.y*(l2.y - l1.y) + ret.z*(l2.z - l1.z)); ret.x = l1.x + (l2.x - l1.x)*t; ret.y = l1.y + (l2.y - l1.y)*t; ret.z = l1.z + (l2.z - l1.z)*t; return ret; } //计算两平面交线,注意事先判断是否平行,并保证三点不共线! line3 intersection(plane3 u, plane3 v) { line3 ret; ret.a = parallel(v.a, v.b, u.a, u.b, u.c) ? intersection(v.b, v.c, u.a, u.b, u.c) : intersection(v.a, v.b, u.a, u.b, u.c); ret.b = parallel(v.c, v.a, u.a, u.b, u.c) ? intersection(v.b, v.c, u.a, u.b, u.c) : intersection(v.c, v.a, u.a, u.b, u.c); return ret; } line3 intersection(point3 u1, point3 u2, point3 u3, point3 v1, point3 v2, point3 v3) { line3 ret; ret.a = parallel(v1, v2, u1, u2, u3) ? intersection(v2, v3, u1, u2, u3) : intersection(v1, v2, u1, u2, u3); ret.b = parallel(v3, v1, u1, u2, u3) ? intersection(v2, v3, u1, u2, u3) : intersection(v3, v1, u1, u2, u3); return ret; } //点到直线距离 double ptoline(point3 p, line3 l) { return vlen(xmult(subt(p, l.a), subt(l.b, l.a))) / distance(l.a, l.b); } //点到平面距离 double ptoplane(point3 p, plane3 s) { return fabs(dmult(pvec(s), subt(p, s.a))) / vlen(pvec(s)); } //直线到直线距离 double linetoline(line3 u, line3 v) { point3 n = xmult(subt(u.a, u.b), subt(v.a, v.b)); return fabs(dmult(subt(u.a, v.a), n)) / vlen(n); } //两直线夹角cos 值 double angle_cos(line3 u, line3 v) { return dmult(subt(u.a, u.b), subt(v.a, v.b)) / vlen(subt(u.a, u.b)) / vlen(subt(v.a, v.b)); } //两平面夹角cos 值 double angle_cos(plane3 u, plane3 v) { return dmult(pvec(u), pvec(v)) / vlen(pvec(u)) / vlen(pvec(v)); } //直线平面夹角sin 值 double angle_sin(line3 l, plane3 s) { return dmult(subt(l.a, l.b), pvec(s)) / vlen(subt(l.a, l.b)) / vlen(pvec(s)); } int main() { int t; std::cin >> t; std::cout << "INTERSECTING LINES OUTPUT" << std::endl; while (t--) { line a, b; std::cin >> a.a.x >> a.a.y >> a.b.x >> a.b.y >> b.a.x >> b.a.y >> b.b.x >> b.b.y; if (xmult(a.a, a.b, b.a) == 0 && xmult(a.a, a.b, b.b) == 0) { std::cout << "LINE" << std::endl; } else if (parallel(a, b)) { std::cout << "NONE" << std::endl; } else { point temp; temp = intersection(a, b); std::cout << std::fixed << std::setprecision(2) << "POINT" << ' ' << temp.x << ' ' << temp.y << std::endl; } } std::cout << "END OF OUTPUT" << std::endl; }