Problem Description
This is a problem from ZOJ 2432.To make it easyer,you just need output the length of the subsequence.
Input
Each sequence is described with M - its length (1 <= M <= 500) and M integer numbers Ai (-2^31 <= Ai < 2^31) - the sequence itself.
Output
output print L - the length of the greatest common increasing subsequence of both sequences.
Sample Input
1
5
1 4 2 5 -12
4
-12 1 2 4
Sample Output
2
题意:求最长递增公共子序列的长度
思路:直接模板
#include <stdio.h> #include <algorithm> #include <string.h> using namespace std; int n,m,a[505],b[505],dp[505][505]; int LICS() { int MAX,i,j; memset(dp,0,sizeof(dp)); for(i = 1; i<=n; i++) { MAX = 0; for(j = 1; j<=m; j++) { dp[i][j] = dp[i-1][j]; if(a[i]>b[j] && MAX<dp[i-1][j]) MAX = dp[i-1][j]; if(a[i]==b[j]) dp[i][j] = MAX+1; } } MAX = 0; for(i = 1; i<=m; i++) if(MAX<dp[n][i]) MAX = dp[n][i]; return MAX; } int main() { int i,t; scanf("%d",&t); while(t--) { scanf("%d",&n); for(i = 1; i<=n; i++) scanf("%d",&a[i]); scanf("%d",&m); for(i = 1; i<=m; i++) scanf("%d",&b[i]); printf("%d ",LICS()); if(t) printf(" "); } return 0; }
上面的虽然可以解决,但是二维浪费空间较大,我们注意到在LICS函数中有一句dp[i][j] = dp[i-1][j],这证明dp数组前后没有变化!于是可以优化成一维数组!
#include <stdio.h> #include <string.h> #include <algorithm> using namespace std; int a[505],b[505],dp[505],n,m; int LICS() { int i,j,MAX; memset(dp,0,sizeof(dp)); for(i = 1; i<=n; i++) { MAX = 0; for(j = 1; j<=m; j++) { if(a[i]>b[j] && MAX<dp[j]) MAX = dp[j]; if(a[i]==b[j]) dp[j] = MAX+1; } } MAX = 0; for(i = 1; i<=m; i++) if(MAX<dp[i]) MAX = dp[i]; return MAX; } int main() { int t,i; scanf("%d",&t); while(t--) { scanf("%d",&n); for(i = 1; i<=n; i++) scanf("%d",&a[i]); scanf("%d",&m); for(i = 1; i<=m; i++) scanf("%d",&b[i]); printf("%d ",LICS()); if(t) printf(" "); } return 0; }