zoukankan      html  css  js  c++  java
  • 运动检测(前景检测)之(一)ViBe

    运动检测(前景检测)之(一)ViBe

    zouxy09@qq.com

    http://blog.csdn.net/zouxy09

     

           因为监控发展的需求,目前前景检测的研究还是很多的,也出现了很多新的方法和思路。个人了解的大概概括为以下一些:

           帧差、背景减除(GMM、CodeBook、 SOBS、 SACON、 VIBE、 W4、多帧平均……)、光流(稀疏光流、稠密光流)、运动竞争(Motion Competition)、运动模版(运动历史图像)、时间熵……等等。如果加上他们的改进版,那就是很大的一个家族了。

          对于上一些方法的一点简单的对比分析可以参考下:

    http://www.cnblogs.com/ronny/archive/2012/04/12/2444053.html

           至于哪个最好,看使用环境吧,各有千秋,有一些适用的情况更多,有一些在某些情况下表现更好。这些都需要针对自己的使用情况作测试确定的。呵呵。

           推荐一个牛逼的库:http://code.google.com/p/bgslibrary/里面包含了各种背景减除的方法,可以让自己少做很多力气活。

           还有王先荣博客上存在不少的分析:

    http://www.cnblogs.com/xrwang/archive/2010/02/21/ForegroundDetection.html

           下面的博客上转载王先荣的上面几篇,然后加上自己分析了两篇:

    http://blog.csdn.net/stellar0

     

           本文主要关注其中的一种背景减除方法:ViBe。stellar0的博客上对ViBe进行了分析,我这里就不再啰嗦了,具体的理论可以参考:

    http://www2.ulg.ac.be/telecom/research/vibe/

    http://blog.csdn.net/stellar0/article/details/8777283

    http://blog.csdn.net/yongshengsilingsa/article/details/6659859

    http://www2.ulg.ac.be/telecom/research/vibe/download.html

    http://www.cvchina.info/2011/12/25/vibe/

    ViBe: A universal background subtraction algorithm for video sequences

    ViBe: a powerful technique for background detection and subtraction in video sequences

     

           ViBe是一种像素级视频背景建模或前景检测的算法,效果优于所熟知的几种算法,对硬件内存占用也少,很简单。我之前根据stellar0的代码(在这里,非常感谢stellar0)改写成一个Mat格式的代码了,现在摆上来和大家交流,具体如下:(在VS2010+OpenCV2.4.2中测试通过)

     

    ViBe.h

    #pragma once
    #include <iostream>
    #include "opencv2/opencv.hpp"
    
    using namespace cv;
    using namespace std;
    
    #define NUM_SAMPLES 20		//每个像素点的样本个数
    #define MIN_MATCHES 2		//#min指数
    #define RADIUS 20		//Sqthere半径
    #define SUBSAMPLE_FACTOR 16	//子采样概率
    
    
    class ViBe_BGS
    {
    public:
    	ViBe_BGS(void);
    	~ViBe_BGS(void);
    
    	void init(const Mat _image);   //初始化
    	void processFirstFrame(const Mat _image);
    	void testAndUpdate(const Mat _image);  //更新
    	Mat getMask(void){return m_mask;};
    
    private:
    	Mat m_samples[NUM_SAMPLES];
    	Mat m_foregroundMatchCount;
    	Mat m_mask;
    };

    ViBe.cpp

    #include <opencv2/opencv.hpp>
    #include <iostream>
    #include "ViBe.h"
    
    using namespace std;
    using namespace cv;
    
    int c_xoff[9] = {-1,  0,  1, -1, 1, -1, 0, 1, 0};  //x的邻居点
    int c_yoff[9] = {-1,  0,  1, -1, 1, -1, 0, 1, 0};  //y的邻居点
    
    ViBe_BGS::ViBe_BGS(void)
    {
    
    }
    ViBe_BGS::~ViBe_BGS(void)
    {
    
    }
    
    /**************** Assign space and init ***************************/
    void ViBe_BGS::init(const Mat _image)
    {
         for(int i = 0; i < NUM_SAMPLES; i++)
         {
    		 m_samples[i] = Mat::zeros(_image.size(), CV_8UC1);
         }
    	 m_mask = Mat::zeros(_image.size(),CV_8UC1);
    	 m_foregroundMatchCount = Mat::zeros(_image.size(),CV_8UC1);
    }
    
    /**************** Init model from first frame ********************/
    void ViBe_BGS::processFirstFrame(const Mat _image)
    {
    	RNG rng;
    	int row, col;
    
    	for(int i = 0; i < _image.rows; i++)
    	{
    		for(int j = 0; j < _image.cols; j++)
    		{
                 for(int k = 0 ; k < NUM_SAMPLES; k++)
                 {
    				 // Random pick up NUM_SAMPLES pixel in neighbourhood to construct the model
    				 int random = rng.uniform(0, 9);
    
    				 row = i + c_yoff[random];
    				 if (row < 0) 
    					 row = 0;
    				 if (row >= _image.rows)
    					 row = _image.rows - 1;
    
    				 col = j + c_xoff[random];
    				 if (col < 0) 
    					 col = 0;
    				 if (col >= _image.cols)
    					 col = _image.cols - 1;
    
    				 m_samples[k].at<uchar>(i, j) = _image.at<uchar>(row, col);
    			 }
    		}
    	}
    }
    
    /**************** Test a new frame and update model ********************/
    void ViBe_BGS::testAndUpdate(const Mat _image)
    {
    	RNG rng;
    
    	for(int i = 0; i < _image.rows; i++)
    	{
    		for(int j = 0; j < _image.cols; j++)
    		{
    			int matches(0), count(0);
    			float dist;
    
    			while(matches < MIN_MATCHES && count < NUM_SAMPLES)
    			{
    				dist = abs(m_samples[count].at<uchar>(i, j) - _image.at<uchar>(i, j));
    				if (dist < RADIUS)
    					matches++;
    				count++;
    			}
    
    			if (matches >= MIN_MATCHES)
    			{
    				// It is a background pixel
    				m_foregroundMatchCount.at<uchar>(i, j) = 0;
    
    				// Set background pixel to 0
    				m_mask.at<uchar>(i, j) = 0;
    
    				// 如果一个像素是背景点,那么它有 1 / defaultSubsamplingFactor 的概率去更新自己的模型样本值
    				int random = rng.uniform(0, SUBSAMPLE_FACTOR);
    				if (random == 0)
    				{
    					random = rng.uniform(0, NUM_SAMPLES);
    					m_samples[random].at<uchar>(i, j) - _image.at<uchar>(i, j);
    				}
    
    				// 同时也有 1 / defaultSubsamplingFactor 的概率去更新它的邻居点的模型样本值
    				random = rng.uniform(0, SUBSAMPLE_FACTOR);
    				if (random == 0)
    				{
    					int row, col;
    					random = rng.uniform(0, 9);
    					row = i + c_yoff[random];
    					if (row < 0) 
    						row = 0;
    					if (row >= _image.rows)
    						row = _image.rows - 1;
    
    					random = rng.uniform(0, 9);
    					col = j + c_xoff[random];
    					if (col < 0) 
    						col = 0;
    					if (col >= _image.cols)
    						col = _image.cols - 1;
    
    					random = rng.uniform(0, NUM_SAMPLES);
    					m_samples[random].at<uchar>(row, col) = _image.at<uchar>(i, j);
    				}
    			}
    			else
    			{
    				// It is a foreground pixel
    				m_foregroundMatchCount.at<uchar>(i, j)++;
    
    				// Set background pixel to 255
    				m_mask.at<uchar>(i, j) = 255;
    
    				//如果某个像素点连续N次被检测为前景,则认为一块静止区域被误判为运动,将其更新为背景点
    				if (m_foregroundMatchCount.at<uchar>(i, j) > 50)
    				{
    					int random = rng.uniform(0, NUM_SAMPLES);
    					if (random == 0)
    					{
    						random = rng.uniform(0, NUM_SAMPLES);
    						m_samples[random].at<uchar>(i, j) = _image.at<uchar>(i, j);
    					}
    				}
    			}
    		}
    	}
    }

    Main.cpp

    // This is based on 
    // "VIBE: A POWERFUL RANDOM TECHNIQUE TO ESTIMATE THE BACKGROUND IN VIDEO SEQUENCES"
    // by Olivier Barnich and Marc Van Droogenbroeck
    // Author : zouxy
    // Date   : 2013-4-13
    // HomePage : http://blog.csdn.net/zouxy09
    // Email  : zouxy09@qq.com
    
    #include "opencv2/opencv.hpp"
    #include "ViBe.h"
    #include <iostream>
    #include <cstdio>
    
    using namespace cv;
    using namespace std;
    
    int main(int argc, char* argv[])
    {
    	Mat frame, gray, mask;
    	VideoCapture capture;
    	capture.open("video.avi");
    
    	if (!capture.isOpened())
    	{
    		cout<<"No camera or video input!
    "<<endl;
    		return -1;
    	}
    
    	ViBe_BGS Vibe_Bgs;
    	int count = 0;
    
    	while (1)
    	{
    		count++;
    		capture >> frame;
    		if (frame.empty())
    			break;
    		cvtColor(frame, gray, CV_RGB2GRAY);
    	
    		if (count == 1)
    		{
    			Vibe_Bgs.init(gray);
    			Vibe_Bgs.processFirstFrame(gray);
    			cout<<" Training GMM complete!"<<endl;
    		}
    		else
    		{
    			Vibe_Bgs.testAndUpdate(gray);
    			mask = Vibe_Bgs.getMask();
    			morphologyEx(mask, mask, MORPH_OPEN, Mat());
    			imshow("mask", mask);
    		}
    
    		imshow("input", frame);	
    
    		if ( cvWaitKey(10) == 'q' )
    			break;
    	}
    
    	return 0;
    }
  • 相关阅读:
    sqlserver跨数据库查询数据
    sqlserver调用钉钉方法
    SQL Server判断对象是否存在
    再学一次C#(基本类型篇)
    .net core部署到centos官方文档的一点小问题
    C#字符串和byte之间的互相转化(转载出自:https://www.cnblogs.com/liangxiaoking/p/5958456.html)
    30分钟通过Kong实现.NET网关
    Envoy实现.NET架构的网关(五)集成Redis实现限流
    Envoy实现.NET架构的网关(四)集成IdentityServer4实现OAuth2认证
    Envoy实现.NET架构的网关(三)代理GRPC
  • 原文地址:https://www.cnblogs.com/jiangu66/p/3226259.html
Copyright © 2011-2022 走看看