zoukankan      html  css  js  c++  java
  • poj 3130 How I Mathematician Wonder What You Are!

    /*
    poj 3130 How I Mathematician Wonder What You Are! - 求多边形有没有核
    
    
    
    */
    #include <stdio.h>
    #include<math.h>
    const double eps=1e-8;
    const int N=103;
    struct point
    {
        double x,y;
    }dian[N];
    inline bool mo_ee(double x,double y)
    {
    	double ret=x-y;
    	if(ret<0) ret=-ret;
    	if(ret<eps) return 1;
    	return 0;
    }
    inline bool mo_gg(double x,double y)  {   return x > y + eps;} // x > y
    inline bool mo_ll(double x,double y)  {   return x < y - eps;} // x < y
    inline bool mo_ge(double x,double y) {   return x > y - eps;} // x >= y
    inline bool mo_le(double x,double y) {   return x < y + eps;} 	// x <= y
    inline double mo_xmult(point p2,point p0,point p1)//p1在p2左返回负,在右边返回正
    {
        return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
    }
    
    point mo_intersection(point u1,point u2,point v1,point v2)
    {
        point ret=u1;
        double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))
    		/((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));
        ret.x+=(u2.x-u1.x)*t;
        ret.y+=(u2.y-u1.y)*t;
        return ret;
    }
    /////////////////////////
    
    //切割法求半平面交
    point mo_banjiao_jiao[N*2];
    point mo_banjiao_jiao_temp[N*2];
    void mo_banjiao_cut(point *ans,point qian,point hou,int &nofdian)
    {
    	int i,k;
    	for(i=k=0;i<nofdian;++i)
    	{
    		double a,b;
    		a=mo_xmult(hou,ans[i],qian);
    		b=mo_xmult(hou,ans[(i+1)%nofdian],qian);
    		if(mo_ge(a,0))//顺时针就是<=0
    		{
    			mo_banjiao_jiao_temp[k++]=ans[i];
    		}if(mo_ll(a*b,0))
    		{
    			mo_banjiao_jiao_temp[k++]=mo_intersection(qian,hou,ans[i],ans[(i+1)%nofdian]);
    		}
    	}
    	for(i=0;i<k;++i)
    	{
    		ans[i]=mo_banjiao_jiao_temp[i];
    	}
    	nofdian=k;
    }
    int mo_banjiao(point *dian,int n)
    {
    	int i,nofdian;
    	nofdian=n;
    	for(i=0;i<n;++i)
    	{
    		mo_banjiao_jiao[i]=dian[i];
    	}
    	for(i=0;i<n;++i)//i从0开始
    	{
    		mo_banjiao_cut(mo_banjiao_jiao,dian[i],dian[(i+1)%n],nofdian);
    		if(nofdian==0)
    		{
    			return nofdian;
    		}
    	}
    	return nofdian;
    }
    /////////////////////////
    int main()
    {
        int t,i,n;
        while(scanf("%d",&n),n)
        {
            
            for(i=0;i<n;++i)
            {
                scanf("%lf%lf",&dian[i].x,&dian[i].y);
            }
            int ret=mo_banjiao(dian,n);
            if(ret==0)
            {
                printf("0
    ");
            }else
            {
                printf("1
    ");
            }
        }
        return 0;
    }



    /*
    为什么ret<3?
    */
    #include<stdio.h>
    #include<math.h>
    #include <algorithm>  
    using namespace std;  
    
    const double eps=1e-8;
    struct point 
    {
    	double x,y;
    }dian[20000+10];
    point jiao[203];
    struct line  
    {  
        point s,e;  
        double angle;  
    }xian[20000+10];  
    int n,yong;
    bool mo_ee(double x,double y)  
    {  
        double ret=x-y;  
        if(ret<0) ret=-ret;  
        if(ret<eps) return 1;  
        return 0;  
    }  
    bool mo_gg(double x,double y)  {   return x > y + eps;} // x > y     
    bool mo_ll(double x,double y)  {   return x < y - eps;} // x < y     
    bool mo_ge(double x,double y) {   return x > y - eps;} // x >= y     
    bool mo_le(double x,double y) {   return x < y + eps;}     // x <= y     
    point mo_intersection(point u1,point u2,point v1,point v2)  
    {  
        point ret=u1;  
        double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))  
    		/((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));  
        ret.x+=(u2.x-u1.x)*t;  
        ret.y+=(u2.y-u1.y)*t;  
        return ret;  
    }  
    double mo_xmult(point p2,point p0,point p1)//p1在p2左返回负,在右边返回正  
    {  
        return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);  
    }  
    
    
    void mo_HPI_addl(point a,point b)  
    {  
    	xian[yong].s=a;  
    	xian[yong].e=b;  
    	xian[yong].angle=atan2(b.y-a.y,b.x-a.x);  
    	yong++;  
    }  
    //半平面交
    bool mo_HPI_cmp(const line& a,const line& b)
    {
    	if(mo_ee(a.angle,b.angle))
    	{
    		return mo_gg( mo_xmult(b.e,a.s,b.s),0);
    	}else
    	{
    		return mo_ll(a.angle,b.angle);
    	}
    }
    int mo_HPI_dq[20000+10];
    bool mo_HPI_isout(line cur,line top,line top_1)
    {
    	point jiao=mo_intersection(top.s,top.e,top_1.s,top_1.e);
    	return mo_ll( mo_xmult(cur.e,jiao,cur.s),0);//若顺时针时应为mo_gg
    }
    int mo_HalfPlaneIntersect(line *xian,int n,point *jiao)
    {
    	int i,j,ret=0;
    	sort(xian,xian+n,mo_HPI_cmp);
    	for (i = 0, j = 0; i < n; i++)
    	{
    		if (mo_gg(xian[i].angle,xian[j].angle))
    		{
    			xian[++j] = xian[i];
    		}
    	}
    	n=j+1;
    	mo_HPI_dq[0]=0;
    	mo_HPI_dq[1]=1;
    	int top=1,bot=0;
    	for (i = 2; i < n; i++)
    	{
            while (top > bot && mo_HPI_isout(xian[i], xian[mo_HPI_dq[top]], xian[mo_HPI_dq[top-1]])) top--;
            while (top > bot && mo_HPI_isout(xian[i], xian[mo_HPI_dq[bot]], xian[mo_HPI_dq[bot+1]])) bot++;
            mo_HPI_dq[++top] = i; //当前半平面入栈
    	}
        while (top > bot && mo_HPI_isout(xian[mo_HPI_dq[bot]], xian[mo_HPI_dq[top]], xian[mo_HPI_dq[top-1]])) top--;
        while (top > bot && mo_HPI_isout(xian[mo_HPI_dq[top]], xian[mo_HPI_dq[bot]], xian[mo_HPI_dq[bot+1]])) bot++;
        mo_HPI_dq[++top] = mo_HPI_dq[bot];
        for (ret = 0, i = bot; i < top; i++, ret++)
    	{
    		jiao[ret]=mo_intersection(xian[mo_HPI_dq[i+1]].s,xian[mo_HPI_dq[i+1]].e,xian[mo_HPI_dq[i]].s,xian[mo_HPI_dq[i]].e);
    	}
    	return ret;
    }
    int main()
    {
    	int i;
    	while(scanf("%d",&n),n)
    	{
    		yong=0;
    		for(i=0;i<n;++i)
    		{
    			scanf("%lf%lf",&dian[i].x,&dian[i].y);
    		}
    		for(i=0;i<n;++i)
    		{
    			mo_HPI_addl(dian[i],dian[(i+1)%n]);
    		}
    		int ret=mo_HalfPlaneIntersect(xian,n,jiao);
    		if(ret<3)
    		{
    			printf("0
    ");
    		}else
    		{
    			printf("1
    ");
    		}
    	}
    	return 0;
    }	


  • 相关阅读:
    JS,JQuery的扩展方法
    Listbox简单用法
    Button模板,样式
    WPF开发经验
    弹出窗体主体实现事件
    从一知半解到揭晓Java高级语法—泛型
    深入理解Java之装箱与拆箱
    探究 — 二叉搜索树
    深入理解二叉树(超详细)
    二分查找及其变种算法
  • 原文地址:https://www.cnblogs.com/jiangu66/p/3249257.html
Copyright © 2011-2022 走看看