原文地址:https://www.cnblogs.com/corvoh/p/5595130.html
最近临近期末的C语言课程设计比平时练习作业一下难了不止一个档次,第一次接触到了C语言的框架开发,了解了View(界面层)、Service(业务逻辑层)、Persistence(持久化层)的分离和耦合,一种面向过程的MVC的感觉。
而这一切的基础就在于对链表的创建、删除、输出、写入文件、从文件读出......
本篇文章在于巩固链表的基础知识(整理自《C语言程序设计教程--人民邮电出版社》第十章——指针与链表),只对链表的概念及增删改查作出探讨,欢迎指教。
一、链表结构和静态/动态链表
二、单链表的建立与遍历
三、单链表的插入与删除
四、双向链表的概念
五、双向链表的建立与遍历
六、双向链表的元素查找
七、循环链表的概念
八、合并两个链表的实例
九、链表实战
拓展思维、拉到最后去看看 (•̀ᴗ•́)و ̑̑
一、链表结构和静态/动态链表
链表是一种常见的数据结构——与数组不同的是:
1.数组首先需要在定义时声明数组大小,如果像这个数组中加入的元素个数超过了数组的长度时,便不能正确保存所有内容;链表可以根据大小需要进行拓展。
2.其次数组是同一数据类型的元素集合,在内存中是按一定顺序连续排列存放的;链表常用malloc等函数动态随机分配空间,用指针相连。
链表结构示意图如下所示:
在链表中,每一个元素包含两个部分;数据部分和指针部分。数据部分用来存放元素所包含的数据,指针部分用来指向下一个元素。最后一个元素的指针指向NULL,表示指向的地址为空。整体用结构体来定义,指针部分定义为指向本结构体类型的指针类型。
静态链表需要数组来实现,即把线性表的元素存放在数组中。数组单元存放链表结点,结点的链域指向下一个元素的位置,即下一个元素所在数组单元的下标。这些元素可能在物理上是连续存放的,也有可能是不连续的,它们之间通过逻辑关系来连接——这就要涉及到数组长度定义的问题,实现无法预知定义多大的数组,动态链表随即出现。
动态链表指在程序执行过程中从无到有地建立起一个链表,即一个一个地开辟结点和输入各结点的数据,并建立起前后相连的关系。
二、单链表的建立与遍历
单链表中,每个结点只有一个指针,所有结点都是单线联系,除了末为结点指针为空外,每个结点的指针都指向下一个结点,一环一环形成一条线性链。
链表的创建过程:
接下来在源码中建立并遍历输出一个单链表。
#include <stdio.h> #include <stdlib.h> #include <malloc.h> /*单向链表*/ struct Student/*建立学生信息结构体模型*/ { char cName[20];/*学生姓名*/ int iNumber;/*学生学号*/ struct student *next;/*指向本结构体类型的指针类型*/ }; int iCount;/*全局变量表示链表长度*/ struct Student *Create();/*创建链表函数声明*/ void print(struct Student *);/*遍历输出链表函数声明*/ int main() { int insert_n=2;/*定义并初始化要插入的结点号*/ int delete_n=2;/*定义并初始化要删除的结点号*/ struct Student *pHead;/*声明一个指向学生信息结构体的指针作pHead为头结点传递*/ pHead=Create();/*创建链表,返回链表的头指针给pHead*/ print(pHead);/*将指针pHead传入输出函数遍历输出*/ return 0; } struct Student *Create() { struct Student *pHead=NULL;/*初始化链表,头指针为空*/ struct Student *pEnd,*pNew; iCount=0;/*初始化链表长度*/ pEnd=pNew=(struct Student *)malloc(sizeof(struct Student));/*动态开辟一个学生信息结构体类型大小的空间,使得pEnd和pNew同时指向该结构体空间*/ scanf("%s",pNew->cName);/*从输入流获取第一个学生姓名*/ scanf("%d",&pNew->iNumber);/*从输入流获取第一个学生学号*/ while(pNew->iNumber!=0)/*设定循环结束条件——学号不为0时*/ { iCount++;/*链表长度+1,即学生信息个数+1*/ if(iCount==1)/*如果链表长度刚刚加为1,执行*/ { pNew->next=pHead;/*使指针指向为空*/ pEnd=pNew;/*跟踪新加入的结点*/ pHead=pNew;/*头结点指向首结点*/ } else/*如果链表已经建立,长度大于等于2时,执行*/ { pNew->next=NULL;/*新结点的指针为空*/ pEnd->next=pNew;/*原来的结点指向新结点*/ pEnd=pNew;/*pEnd指向新结点*/ } pNew=(struct Student *)malloc(sizeof(struct Student));/*再次分配结点的内存空间*/ scanf("%s",pNew->cName);/*从输入流获取第一个学生姓名*/ scanf("%d",&pNew->iNumber);/*从输入流获取第一个学生学号*/ } free(pNew);/*释放结点空间*/ return pHead;/*返回创建出的头指针*/ } void print(struct Student *pHead) { struct Student *pTemp;/*定义指向一个学生信息结构体类型的临时指针*/ int iIndex=1;/*定义并出事哈变量iIndex,用来标识第几个学生(信息)*/ printf("总共%d个学生(信息): ",iCount); pTemp=pHead;/*指针得到首结点的地址*/ while(pTemp!=NULL)/*当临时指针不指向NULL时*/ { printf("第%d个学生信息: ",iIndex); printf("姓名:%s",pTemp->cName); /*输出姓名*/ printf("学号:%d",pTemp->iNumber);/*输出学号*/ pTemp=pTemp->next;/*移动临时指针到下一个结点*/ iIndex++;/*进行自加运算*/ } }
三、单链表的插入与删除
在本实例中,插入时根据传递来的学号,插入到其后。
删除时根据其所在链表的位置,删除并释放该空间。
主函数增加如下:
int main() { int insert_n=2;/*定义并初始化要插入的结点号*/ int delete_n=2;/*定义并初始化要删除的结点号*/ struct Student *pHead;/*声明一个指向学生信息结构体的指针作pHead为头结点传递*/ pHead=Create();/*创建链表,返回链表的头指针给pHead*/ pHead=Insert(pHead,insert_n);/*将指针pHead和要插入的结点数传递给插入函数*/ print(pHead);/*将指针pHead传入输出函数遍历输出*/ Delete(pHead,delete_n);/*将指针pHead和要删除的结点数传递给删除函数*/ print(pHead);/*将指针pHead传入输出函数遍历输出*/ return 0; }
插入函数:
struct Student *Insert(struct Student *pHead,int number) { struct Student *p=pHead,*pNew;/*定义pNew指向新分配的空间*/ while(p&&p->iNumber!=number) p=p->next;/*使临时结点跟踪到要插入的位置(该实例必须存在学号为number的信息,插入其后,否则出错)*/ printf("姓名和学号: "); /*分配内存空间,返回该内存空间的地址*/ pNew=(struct Student *)malloc(sizeof(struct Student)); scanf("%s",pNew->cName); scanf("%d",&pNew->iNumber); pNew->next=p->next;/*新结点指针指向原来的结点*/ p->next=pNew;/*头指针指向新结点*/ iCount++;/*增加链表结点数量*/ return pHead;/*返回头指针*/ }
删除函数:
void Delete(struct Student *pHead,int number) { int i; struct Student *pTemp;/*临时指针*/ struct Student *pPre;/*表示要删除结点前的结点*/ pTemp=pHead;/*得到链表的头结点*/ pPre=pTemp; for(i=0;i<number;i++) {/*通过for循环使得Temp指向要删除的结点*/ pPre=pTemp; pTemp=pTemp->next; } pPre->next=pTemp->next;/*连接删除结点两边的结点*/ free(pTemp);/*释放要删除结点的内存空间*/ iCount--;/*减少链表中的结点个数*/ }
四、双向链表的概念
双向链表基于单链表。单链表是单向的,有一个头结点,一个尾结点,要访问任何结点,都必须知道头结点,不能逆着进行。而双链表添加了一个指针域,通过两个指针域,分别指向结点的前结点和后结点。这样的话,可以通过双链表的任何结点,访问到它的前结点和后结点。
在双向链表中,结点除含有数据域外,还有两个链域,一个存储直接后继结点的地址,一般称为右链域;一个存储直接前驱结点地址,一般称之为左链域。
双向链表结构示意图:
五、双向链表的建立与遍历
双向链表的源码实战和单链表类似,只是多了第二个指针域的控制,这里直接贴上没有注释的源代码。
#include <stdio.h> #include <stdlib.h> #include <malloc.h> #define N 10 typedef struct Node { char name[20]; struct Node *llink,*rlink; }STUD; STUD *creat(int);void print(STUD *); int main() { int number; char studname[20]; STUD *head,*searchpoint; number=N; head=creat(number); print(head); printf("请输入你要查找的人的姓名:"); scanf("%s",studname); searchpoint=search(head,studname); printf("你所要查找的人的姓名是:%s",*&searchpoint->name); return 0; } STUD *creat(int n) { STUD *p,*h,*s; int i; if((h=(STUD *)malloc(sizeof(STUD)))==NULL) { printf("不能分配内存空间"); exit(0); } h->name[0]='