zoukankan      html  css  js  c++  java
  • 617 ECharts 基本概念: 系列,dataset, 组件,定位,坐标系

    ECharts 基本概念

    ECharts 基本概念: 系列

    系列(series)是指:一组数值映射成对应的图 【一个系列对应一张图,series中的一个子项对应一张图。】

    系列

    案例:多系列混合


    <!DOCTYPE html>
    <html>
      <head>
        <meta charset="utf-8">
        <script src="https://cdn.jsdelivr.net/npm/echarts@4.7.0/dist/echarts.min.js"></script>
        <style>
          #chart {
             800px;
            height: 400px;
          }
        </style>
      </head>
      <body>
        <div id="chart"></div>
        <script>
          const chartDom = document.getElementById('chart')
          const chart = echarts.init(chartDom)
          const option = {
            xAxis: {
              data: ['一季度', '二季度', '三季度', '四季度']
            },
            yAxis: {},
            // 【一个系列对应一张图,series中的一个子项对应一张图。】
            series: [{
              type: 'pie',
              // 第一个参数是字符串,不是数字
              center: ['65%', 60],
              radius: 35,
              data: [{
                // value:表示占比
                name: '分类1', value: 50
              }, {
                name: '分类2', value: 60
              }, {
                name: '分类3', value: 55
              }, {
                name: '分类4', value: 70
              }]
            }, {
              type: 'line',
              // 每个数字对应xAxis.data中的每个柱状位置
              // 【纵坐标的数字会以series中所有子项的data的最大值的这项为准,并成等差队列。】
              data: [100, 112, 96, 123]
            }, {
              type: 'bar',
              data: [79, 81, 88, 72]
            }]
          }
          chart.setOption(option)
        </script>
      </body>
    </html>
    

    <!DOCTYPE html>
    <html lang="en">
    
    <head>
      <meta charset="UTF-8">
      <meta http-equiv="X-UA-Compatible" content="IE=edge">
      <meta name="viewport" content="width=device-width, initial-scale=1.0">
      <title>Document</title>
      <script src="https://cdn.jsdelivr.net/npm/echarts@4.7.0/dist/echarts.js"></script>
      <style>
        #chart {
           666px;
          height: 566px;
        }
      </style>
    
    
    </head>
    
    <body>
      <div id="chart"></div>
    
      <script>
        const chartDom = document.querySelector('#chart')
        const chart = echarts.init(chartDom)
    
        chart.setOption({
          title: {
            text: '我的多系列'
          },
          xAxis: {
            data: [111, 222, 333, 555]
          },
          yAxis: {
    
          },
          series: [
            {
              name: '饼图',
              type: 'pie',
              center: [350, 150],
              radius: 50,
              data: [{
                name: '分类1', value: 10
              }, {
                name: '分类2', value: 30
              }, {
                name: '分类3', value: 20
              }, {
                name: '分类4', value: 40
              }]
            },
            {
              name: '折线图',
              type: 'line',
              data: [10, 30, 20, 50, 40, 60, 80, 70]
            },
            {
              name: '柱状图',
              type: 'bar',
              data: [110, 90, 60, 150, 66]
            }
          ]
        })
      </script>
    </body>
    
    </html>
    

    ~

    ~


    test-echarts.html

    <!DOCTYPE html>
    <html>
    
    <head>
      <meta charset="utf-8">
      <script src="https://cdn.jsdelivr.net/npm/echarts@4.7.0/dist/echarts.js"></script>
      <style>
        #chart {
           800px;
          height: 400px;
        }
      </style>
    
      <script>
        // 路径:文档 --> 教程 --> ECharts 中的样式简介 --> 颜色主题(Theme --> 选择方案 --> 点击基本配置,修改配置 --> 下载主题 --> 点击复制,把js代码复制到<script><script>中 --> 在echarts.init添加第二个参数为刚刚生成的主题色 --> 
        (function (root, factory) {
          if (typeof define === 'function' && define.amd) {
            // AMD. Register as an anonymous module.
            define(['exports', 'echarts'], factory);
          } else if (typeof exports === 'object' && typeof exports.nodeName !== 'string') {
            // CommonJS
            factory(exports, require('echarts'));
          } else {
            // Browser globals
            factory({}, root.echarts);
          }
        }(this, function (exports, echarts) {
          var log = function (msg) {
            if (typeof console !== 'undefined') {
              console && console.error && console.error(msg);
            }
          };
          if (!echarts) {
            log('ECharts is not Loaded');
            return;
          }
          echarts.registerTheme('westeros', {
            "color": [
              "#516b91",
              "#59c4e6",
              "#edafda",
              "#93b7e3",
              "#a5e7f0",
              "#cbb0e3"
            ],
            "backgroundColor": "rgba(0,0,0,0)",
            "textStyle": {},
            "title": {
              "textStyle": {
                "color": "#516b91"
              },
              "subtextStyle": {
                "color": "#93b7e3"
              }
            },
            "line": {
              "itemStyle": {
                "normal": {
                  "borderWidth": "2"
                }
              },
              "lineStyle": {
                "normal": {
                  "width": "2"
                }
              },
              "symbolSize": "6",
              "symbol": "emptyCircle",
              "smooth": true
            },
            "radar": {
              "itemStyle": {
                "normal": {
                  "borderWidth": "2"
                }
              },
              "lineStyle": {
                "normal": {
                  "width": "2"
                }
              },
              "symbolSize": "6",
              "symbol": "emptyCircle",
              "smooth": true
            },
            "bar": {
              "itemStyle": {
                "normal": {
                  "barBorderWidth": 0,
                  "barBorderColor": "#ccc"
                },
                "emphasis": {
                  "barBorderWidth": 0,
                  "barBorderColor": "#ccc"
                }
              }
            },
            "pie": {
              "itemStyle": {
                "normal": {
                  "borderWidth": 0,
                  "borderColor": "#ccc"
                },
                "emphasis": {
                  "borderWidth": 0,
                  "borderColor": "#ccc"
                }
              }
            },
            "scatter": {
              "itemStyle": {
                "normal": {
                  "borderWidth": 0,
                  "borderColor": "#ccc"
                },
                "emphasis": {
                  "borderWidth": 0,
                  "borderColor": "#ccc"
                }
              }
            },
            "boxplot": {
              "itemStyle": {
                "normal": {
                  "borderWidth": 0,
                  "borderColor": "#ccc"
                },
                "emphasis": {
                  "borderWidth": 0,
                  "borderColor": "#ccc"
                }
              }
            },
            "parallel": {
              "itemStyle": {
                "normal": {
                  "borderWidth": 0,
                  "borderColor": "#ccc"
                },
                "emphasis": {
                  "borderWidth": 0,
                  "borderColor": "#ccc"
                }
              }
            },
            "sankey": {
              "itemStyle": {
                "normal": {
                  "borderWidth": 0,
                  "borderColor": "#ccc"
                },
                "emphasis": {
                  "borderWidth": 0,
                  "borderColor": "#ccc"
                }
              }
            },
            "funnel": {
              "itemStyle": {
                "normal": {
                  "borderWidth": 0,
                  "borderColor": "#ccc"
                },
                "emphasis": {
                  "borderWidth": 0,
                  "borderColor": "#ccc"
                }
              }
            },
            "gauge": {
              "itemStyle": {
                "normal": {
                  "borderWidth": 0,
                  "borderColor": "#ccc"
                },
                "emphasis": {
                  "borderWidth": 0,
                  "borderColor": "#ccc"
                }
              }
            },
            "candlestick": {
              "itemStyle": {
                "normal": {
                  "color": "#edafda",
                  "color0": "transparent",
                  "borderColor": "#d680bc",
                  "borderColor0": "#8fd3e8",
                  "borderWidth": "2"
                }
              }
            },
            "graph": {
              "itemStyle": {
                "normal": {
                  "borderWidth": 0,
                  "borderColor": "#ccc"
                }
              },
              "lineStyle": {
                "normal": {
                  "width": 1,
                  "color": "#aaaaaa"
                }
              },
              "symbolSize": "6",
              "symbol": "emptyCircle",
              "smooth": true,
              "color": [
                "#516b91",
                "#59c4e6",
                "#edafda",
                "#93b7e3",
                "#a5e7f0",
                "#cbb0e3"
              ],
              "label": {
                "normal": {
                  "textStyle": {
                    "color": "#eeeeee"
                  }
                }
              }
            },
            "map": {
              "itemStyle": {
                "normal": {
                  "areaColor": "#f3f3f3",
                  "borderColor": "#516b91",
                  "borderWidth": 0.5
                },
                "emphasis": {
                  "areaColor": "#a5e7f0",
                  "borderColor": "#516b91",
                  "borderWidth": 1
                }
              },
              "label": {
                "normal": {
                  "textStyle": {
                    "color": "#000"
                  }
                },
                "emphasis": {
                  "textStyle": {
                    "color": "#516b91"
                  }
                }
              }
            },
            "geo": {
              "itemStyle": {
                "normal": {
                  "areaColor": "#f3f3f3",
                  "borderColor": "#516b91",
                  "borderWidth": 0.5
                },
                "emphasis": {
                  "areaColor": "#a5e7f0",
                  "borderColor": "#516b91",
                  "borderWidth": 1
                }
              },
              "label": {
                "normal": {
                  "textStyle": {
                    "color": "#000"
                  }
                },
                "emphasis": {
                  "textStyle": {
                    "color": "#516b91"
                  }
                }
              }
            },
            "categoryAxis": {
              "axisLine": {
                "show": true,
                "lineStyle": {
                  "color": "#cccccc"
                }
              },
              "axisTick": {
                "show": false,
                "lineStyle": {
                  "color": "#333"
                }
              },
              "axisLabel": {
                "show": true,
                "textStyle": {
                  "color": "#999999"
                }
              },
              "splitLine": {
                "show": true,
                "lineStyle": {
                  "color": [
                    "#eeeeee"
                  ]
                }
              },
              "splitArea": {
                "show": false,
                "areaStyle": {
                  "color": [
                    "rgba(250,250,250,0.05)",
                    "rgba(200,200,200,0.02)"
                  ]
                }
              }
            },
            "valueAxis": {
              "axisLine": {
                "show": true,
                "lineStyle": {
                  "color": "#cccccc"
                }
              },
              "axisTick": {
                "show": false,
                "lineStyle": {
                  "color": "#333"
                }
              },
              "axisLabel": {
                "show": true,
                "textStyle": {
                  "color": "#999999"
                }
              },
              "splitLine": {
                "show": true,
                "lineStyle": {
                  "color": [
                    "#eeeeee"
                  ]
                }
              },
              "splitArea": {
                "show": false,
                "areaStyle": {
                  "color": [
                    "rgba(250,250,250,0.05)",
                    "rgba(200,200,200,0.02)"
                  ]
                }
              }
            },
            "logAxis": {
              "axisLine": {
                "show": true,
                "lineStyle": {
                  "color": "#cccccc"
                }
              },
              "axisTick": {
                "show": false,
                "lineStyle": {
                  "color": "#333"
                }
              },
              "axisLabel": {
                "show": true,
                "textStyle": {
                  "color": "#999999"
                }
              },
              "splitLine": {
                "show": true,
                "lineStyle": {
                  "color": [
                    "#eeeeee"
                  ]
                }
              },
              "splitArea": {
                "show": false,
                "areaStyle": {
                  "color": [
                    "rgba(250,250,250,0.05)",
                    "rgba(200,200,200,0.02)"
                  ]
                }
              }
            },
            "timeAxis": {
              "axisLine": {
                "show": true,
                "lineStyle": {
                  "color": "#cccccc"
                }
              },
              "axisTick": {
                "show": false,
                "lineStyle": {
                  "color": "#333"
                }
              },
              "axisLabel": {
                "show": true,
                "textStyle": {
                  "color": "#999999"
                }
              },
              "splitLine": {
                "show": true,
                "lineStyle": {
                  "color": [
                    "#eeeeee"
                  ]
                }
              },
              "splitArea": {
                "show": false,
                "areaStyle": {
                  "color": [
                    "rgba(250,250,250,0.05)",
                    "rgba(200,200,200,0.02)"
                  ]
                }
              }
            },
            "toolbox": {
              "iconStyle": {
                "normal": {
                  "borderColor": "#999999"
                },
                "emphasis": {
                  "borderColor": "#666666"
                }
              }
            },
            "legend": {
              "textStyle": {
                "color": "#999999"
              }
            },
            "tooltip": {
              "axisPointer": {
                "lineStyle": {
                  "color": "#cccccc",
                  "width": 1
                },
                "crossStyle": {
                  "color": "#cccccc",
                  "width": 1
                }
              }
            },
            "timeline": {
              "lineStyle": {
                "color": "#8fd3e8",
                "width": 1
              },
              "itemStyle": {
                "normal": {
                  "color": "#8fd3e8",
                  "borderWidth": 1
                },
                "emphasis": {
                  "color": "#8fd3e8"
                }
              },
              "controlStyle": {
                "normal": {
                  "color": "#8fd3e8",
                  "borderColor": "#8fd3e8",
                  "borderWidth": 0.5
                },
                "emphasis": {
                  "color": "#8fd3e8",
                  "borderColor": "#8fd3e8",
                  "borderWidth": 0.5
                }
              },
              "checkpointStyle": {
                "color": "#8fd3e8",
                "borderColor": "rgba(138,124,168,0.37)"
              },
              "label": {
                "normal": {
                  "textStyle": {
                    "color": "#8fd3e8"
                  }
                },
                "emphasis": {
                  "textStyle": {
                    "color": "#8fd3e8"
                  }
                }
              }
            },
            "visualMap": {
              "color": [
                "#516b91",
                "#59c4e6",
                "#a5e7f0"
              ]
            },
            "dataZoom": {
              "backgroundColor": "rgba(0,0,0,0)",
              "dataBackgroundColor": "rgba(255,255,255,0.3)",
              "fillerColor": "rgba(167,183,204,0.4)",
              "handleColor": "#a7b7cc",
              "handleSize": "100%",
              "textStyle": {
                "color": "#333333"
              }
            },
            "markPoint": {
              "label": {
                "normal": {
                  "textStyle": {
                    "color": "#eeeeee"
                  }
                },
                "emphasis": {
                  "textStyle": {
                    "color": "#eeeeee"
                  }
                }
              }
            }
          });
        }));
      </script>
    </head>
    
    <body>
      <div id="chart"></div>
    
      <script>
        const chartDom = document.getElementById('chart');
        // 1、引入echarts.js后,会生成全局的echarts类;2、参数二:主题的文本,参数三:渲染成svg
        const chart = echarts.init(chartDom, 'westeros', { renderer: 'svg' });
    
        // 不是setOptions,没有s
        chart.setOption({
          title: {
            text: 'ECharts 入门案例'
          },
          // 渲染一个图表,至少需要添加3个元素
          // x轴
          xAxis: {
            data: ['食品', '数码', '服饰', '箱包']
          },
          // y轴,没有数据,也要写上
          yAxis: {},
          // 数据、图表类型
          series: {
            type: 'bar', // 使用柱状图
            data: [100, 120, 90, 150] // 一次对应xAxis.data的每一项
          }
        });
      </script>
    </body>
    
    </html>
    

    ECharts 4.0 新特性:dataset

    ECharts 4 开始支持了 数据集(dataset)组件用于单独的数据集声明,从而数据可以单独管理,被多个组件复用,并且可以自由指定数据到视觉的映射。这一特性能将逻辑和数据分离,带来更好的复用,并易于理解。

    系列2


    案例:dataset 移植


    <!DOCTYPE html>
    <html>
      <head>
        <meta charset="utf-8">
        <script src="https://cdn.jsdelivr.net/npm/echarts@4.7.0/dist/echarts.min.js"></script>
        <style>
          #chart {
             800px;
            height: 400px;
          }
        </style>
      </head>
      <body>
        <div id="chart"></div>
        <script>
          const chartDom = document.getElementById('chart')
          const chart = echarts.init(chartDom)
          const option = {
            xAxis: {
              type: 'category'
            },
            yAxis: {},
            dataset: {
              source: [
                ['一季度', 79, 100, '分类1', 50],
                ['二季度', 81, 112, '分类2', 60],
                ['三季度', 88, 96, '分类3', 55],
                ['四季度', 72, 123, '分类4', 70],
              ]
            },
            series: [{
              type: 'pie',
              center: ['65%', 60],
              radius: 35,
              // encode里指定的数据,列要对得上,否则图标会错乱,有的不显示
              encode: { itemName: 3, value: 4 }
            }, {
              type: 'line',
              encode: { x: 0, y: 2 } // x指定的列会渲染到x轴上
            }, {
              type: 'bar',
              encode: { x: 0, y: 1 }
            }]
          }
          chart.setOption(option)
        </script>
      </body>
    </html>
    

    ECharts 基本概念: 组件

    ECharts 中除了绘图之外其他部分,都可抽象为 「组件」。例如,ECharts 中至少有这些组件:xAxis(直角坐标系 X 轴)、yAxis(直角坐标系 Y 轴)、grid(直角坐标系底板)、angleAxis(极坐标系角度轴)...

    组件


    案例:各种组件


    <!DOCTYPE html>
    <html>
    
    <head>
      <meta charset="utf-8">
      <script src="https://cdn.jsdelivr.net/npm/echarts@4.7.0/dist/echarts.min.js"></script>
      <style>
        #chart {
           800px;
          height: 400px;
        }
      </style>
    </head>
    
    <body>
      <div id="chart"></div>
      <script>
        const chartDom = document.getElementById('chart')
        const chart = echarts.init(chartDom)
        const option = {
          title: {
            text: '数据可视化',
            subtext: '哈哈哈数据可视化'
          },
          xAxis: {
            type: 'category'
          },
          yAxis: {},
          // 图例,要和series绑定,绑定方法:给series的子项添加name属性,属性名和data中的保持一致才会在图表中显示name文字
          legend: {
            data: [
              {
                name: '分类',
                // 强制设置图形为圆。
                icon: 'circle',
                // 设置文本为红色
                textStyle: {
                  color: 'red'
                }
              },
              '折线图',
              '柱状图'
            ],
            left: 100
          },
          // 右上角功能区
          toolbox: {
            feature: {
              saveAsImage: {},  // 改变按钮位置,把保存图片放到最前面
              dataZoom: {
                yAxisIndex: false // 设置为false,不控制任何y轴,缩放才会正常
              },
              restore: {} // 还原按钮,写了才会显示
            }
          },
          dataZoom: [{
            show: true,
            // 分别从30%、70%的位置开始、结束
            start: 30,
            end: 70
          }],
          dataset: {
            source: [
              ['一季度', 79, 100, '分类1', 50],
              ['二季度', 81, 112, '分类2', 60],
              ['三季度', 88, 96, '分类3', 55],
              ['四季度', 72, 123, '分类4', 70]
            ]
          },
          grid: [{
            // 【表示图表距离左边、顶部的距离,有上右下左,只影响图表位置,不影响标题、图例等组件,因为图例组件本身有同样的属性控制位置。】
            left: 50,
            top: 70
          }],
          series: [{
            name: '分类',
            type: 'pie',
            center: ['65%', 60],
            radius: 35,
            encode: { itemName: 3, value: 4 }
          }, {
            name: '折线图',
            type: 'line',
            encode: { x: 0, y: 2 }
          }, {
            name: '柱状图',
            type: 'bar',
            encode: { x: 0, y: 1 }
          }]
        }
        chart.setOption(option)
      </script>
    </body>
    
    </html>
    

    test-echarts-series.html

    <!DOCTYPE html>
    <html>
    
    <head>
      <meta charset="utf-8">
      <script src="https://cdn.jsdelivr.net/npm/echarts@4.7.0/dist/echarts.js"></script>
      <style>
        #chart {
           800px;
          height: 400px;
        }
      </style>
    </head>
    
    <body>
      <div id="chart"></div>
      <script>
        const chartDom = document.getElementById('chart');
        const chart = echarts.init(chartDom);
        chart.setOption({
          dataset: {
            source: [
              ['一季度', 100, 79, '分类1', 50],
              ['二季度', 112, 81, '分类2', 60],
              ['三季度', 96, 88, '分类3', 55],
              ['四季度', 123, 72, '分类4', 70]
            ]
          },
          title: {
            text: 'ECharts 多系列案例',
            subtext: '哈哈数据可视化呵呵'
          },
          xAxis: {
            data: ['一季度', '二季度', '三季度', '四季度']
          },
          yAxis: {},
          // 图例,要和series绑定,绑定方法:给series的子项添加name属性
          legend: {
            data: [{
              // 可以修改图例的样式
              name: '分类',
              icon: 'circle',
              textStyle: {
                color: 'red'
              }
            }, '折线图', '柱状图'],
            left: 300 // 距离左侧位置
          },
          grid: {
            top: 100,
            left: '10%',
            right: '10%',
            bottom: 100
          },
          // 右上角功能区
          toolbox: {
            feature: {
              saveAsImage: {},  // 改变按钮位置,把保存图片放到最前面
              dataZoom: {
                yAxisIndex: false // 设置为false,不控制任何y轴,缩放才会正常
              },
              restore: {}
            }
          },
          // 【底部控制可视区的滚动条】
          dataZoom: [
            {
              show: true,
              start: 30,
              end: 70
            }
          ],
          series: [{
            name: '分类',
            type: 'pie', // 饼图
            center: ['65%', 60], // 饼图【圆心】的位置 【距离左侧65%,距离右侧60px(应该是上侧)】
            radius: 35,
            encode: { itemName: 3, value: 4 } // 第四列、第五列
          }, {
            name: '折线图',
            type: 'line',
            encode: { x: 0, y: 1 }
          }, {
            name: '柱状图',
            type: 'bar',
            encode: { x: 0, y: 2 }
          }]
        });
      </script>
    </body>
    
    </html>
    

    ECharts 基本概念:定位

    大多数组件都提供了定位属性,我们可以采用类似 CSS absolute 的定位属性来控制组件的位置,下面这个案例可以通过修改 grid 组件定位来控制图表的位置

    定位


    <!DOCTYPE html>
    <html>
    
    <head>
      <meta charset="utf-8">
      <script src="https://cdn.jsdelivr.net/npm/echarts@4.7.0/dist/echarts.min.js"></script>
      <style>
        #chart {
           800px;
          height: 400px;
          margin-top: 10px;
        }
      </style>
    </head>
    
    <body>
      <div>
        top: <input type="text" id="top">
        left: <input type="text" id="left">
        right: <input type="text" id="right">
        bottom: <input type="text" id="bottom">
      </div>
      <div id="chart"></div>
    
      <script>
        let _left = 0
        let _top = 0
        let _bottom = 0
        let _right = 0
        const topInput = document.getElementById('top')
        const leftInput = document.getElementById('left')
        const bottomInput = document.getElementById('bottom')
        const rightInput = document.getElementById('right')
        const chartDom = document.getElementById('chart')
        const chart = echarts.init(chartDom)
    
        function addInputEvent(dom, key) {
          dom.addEventListener('input', function (e) {
            value = e.target.value
            switch (key) {
              case 'top':
                _top = value
                break
              case 'left':
                _left = value
                break
              case 'bottom':
                _bottom = value
                break
              case 'right':
                _right = value
                break
            }
            render()
          })
        }
    
        function render() {
          const option = {
            title: {
              text: '数据可视化',
              subtext: '哈哈哈数据可视化哈哈哈'
            },
            xAxis: {
              type: 'category'
            },
            yAxis: {},
            dataset: {
              source: [
                ['一季度', 79, 100, '分类1', 50],
                ['二季度', 81, 112, '分类2', 60],
                ['三季度', 88, 96, '分类3', 55],
                ['四季度', 72, 123, '分类4', 70],
              ]
            },
            grid: [{
              left: _left,
              top: _top,
              right: _right,
              bottom: _bottom
            }],
            series: [{
              name: '折线图',
              type: 'line',
              encode: { x: 0, y: 2 }
            }]
          }
          chart.setOption(option)
        }
        
        window.onload = function () {
          topInput.value = _top
          leftInput.value = _left
          bottomInput.value = _bottom
          rightInput.value = _right
          addInputEvent(topInput, 'top')
          addInputEvent(leftInput, 'left')
          addInputEvent(bottomInput, 'bottom')
          addInputEvent(rightInput, 'right')
          render()
        }
      </script>
    </body>
    
    </html>
    

    ECharts 基本概念:坐标系

    很多系列,例如 line(折线图)、bar(柱状图)、scatter(散点图)、heatmap(热力图)等等,需要运行在 “坐标系” 上。坐标系用于布局这些图,以及显示数据的刻度等等。例如 ECharts 中至少支持这些坐标系:直角坐标系、极坐标系、地理坐标系(GEO)、单轴坐标系、日历坐标系 等。其他一些系列,例如 pie(饼图)、tree(树图)等等,并不依赖坐标系,能独立存在。还有一些图,例如 graph(关系图)等,既能独立存在,也能布局在坐标系中,依据用户的设定而来。

    一个坐标系,可能由多个组件协作而成。我们以最常见的直角坐标系来举例。直角坐标系中,包括有 xAxis(直角坐标系 X 轴)、yAxis(直角坐标系 Y 轴)、grid(直角坐标系底板)三种组件。xAxis、yAxis 被 grid 自动引用并组织起来,共同工作。


    案例:散点图

    我们来看下图,这是最简单的使用直角坐标系的方式:只声明了 xAxis、yAxis 和一个 scatter(散点图系列),ECharts 会为它们创建 grid 并进行关联:

    坐标系


    <!DOCTYPE html>
    <html>
    
    <head>
      <meta charset="utf-8">
      <script src="https://cdn.jsdelivr.net/npm/echarts@4.7.0/dist/echarts.min.js"></script>
      <style>
        #chart {
           800px;
          height: 400px;
        }
      </style>
    </head>
    
    <body>
      <div id="chart"></div>
    
      <script>
        const chartDom = document.getElementById('chart')
        const chart = echarts.init(chartDom)
        
        const option = {
          xAxis: {},
          yAxis: {},
          dataset: {
            source: [
              [13, 44],
              [51, 51],
              [51, 32],
              [67, 19],
              [19, 33]
            ]
          },
          series: [{
            type: 'scatter', // 散点图的名称
            encode: { x: 0, y: 1 }
          }]
        }
    
        chart.setOption(option)
      </script>
    </body>
    
    </html>
    

    案例:双坐标系

    双坐标系只能存在于一个坐标系中。

    再来看下图,两个 yAxis,共享了一个 xAxis。两个 series,也共享了这个 xAxis,但是分别使用不同的 yAxis,使用 yAxisIndex 来指定它自己使用的是哪个 yAxis:

    坐标系


    <!DOCTYPE html>
    <html>
    
    <head>
      <meta charset="utf-8">
      <script src="https://cdn.jsdelivr.net/npm/echarts@4.7.0/dist/echarts.min.js"></script>
      <style>
        #chart {
           800px;
          height: 400px;
        }
      </style>
    </head>
    
    <body>
      <div id="chart"></div>
      <script>
        const chartDom = document.getElementById('chart')
        const chart = echarts.init(chartDom)
    
        const option = {
          legend: {},
          tooltip: {},
          xAxis: {
            // 多坐标系需要明确指定xAxis的type。这里xAxis是2012~2015这样的分类数据。
            type: 'category'
          },
          yAxis: [{
            // 纵坐标的线错位的另一种解决方案:自定义左右坐标系的刻度
            min: 0,
            max: 100
          }, {
            min: 0,
            max: 100,
            // 左右两边的纵坐标的线错位,把右边的线隐藏
            // splitLine: {
            //   show: false
            // } 
          }],
          dataset: {
            source: [
              ['product', '2012', '2013', '2014', '2015'],
              ['Matcha Latte', 41.1, 30.4, 65.1, 53.3],
              ['Milk Tea', 86.5, 92.1, 85.7, 83.1]
            ]
          },
          series: [
            {
              type: 'bar',
              seriesLayoutBy: 'row', // 以行的方式进行取数据
              yAxisIndex: 0  // 表示这个柱状图对应的是yAxis的第一个坐标系
            },
            {
              type: 'line',
              seriesLayoutBy: 'row',
              yAxisIndex: 1
            }
          ]
        }
        chart.setOption(option)
      </script>
    </body>
    
    </html>
    

    案例:多坐标系

    多坐标系允许有多个直角坐标系。

    再来看下图,一个 ECharts 实例中,有多个 grid,每个 grid 分别有 xAxis、yAxis,他们使用 xAxisIndex、yAxisIndex、gridIndex 来指定引用关系:

    坐标系


    <!DOCTYPE html>
    <html>
    
    <head>
      <meta charset="utf-8">
      <script src="https://cdn.jsdelivr.net/npm/echarts@4.7.0/dist/echarts.min.js"></script>
      <style>
        #chart {
           800px;
          height: 400px;
        }
      </style>
    </head>
    
    <body>
      <div id="chart"></div>
      <script>
        const chartDom = document.getElementById('chart')
        const chart = echarts.init(chartDom)
        const option = {
          legend: {},
          tooltip: {},
          xAxis: [
            {
              type: 'category',
              gridIndex: 0
            },
            {
              type: 'category',
              gridIndex: 1
            }
          ],
          yAxis: [
            {
              // y轴的坐标系也要指定gridIndex,和x轴保持一致
              gridIndex: 0
            },
            {
              gridIndex: 1
            }
          ],
          dataset: {
            source: [
              ['product', '2012', '2013', '2014', '2015'],
              ['Matcha Latte', 41.1, 30.4, 65.1, 53.3],
              ['Milk Tea', 86.5, 92.1, 85.7, 83.1],
              ['Cheese Cocoa', 24.1, 67.2, 79.5, 86.4]
            ]
          },
          // 建2个,用来区分2个坐标系,通过间距区分,否则重叠在一起不好区分
          grid: [
            {
              bottom: '55%'
            },
            {
              top: '55%'
            }
          ],
          series: [
            // 这几个系列会在第一个直角坐标系中,每个系列对应到 dataset 的每一行。
            {
              type: 'bar',
              seriesLayoutBy: 'row'
            },
            {
              type: 'bar',
              seriesLayoutBy: 'row'
            },
            {
              type: 'bar',
              seriesLayoutBy: 'row'
            },
            // 这几个系列会在第二个直角坐标系中,每个系列对应到 dataset 的每一列。
            {
              type: 'bar',
              xAxisIndex: 1,
              yAxisIndex: 1
            },
            {
              type: 'bar',
              xAxisIndex: 1,
              yAxisIndex: 1
            },
            {
              type: 'bar',
              xAxisIndex: 1, // 选择哪个x轴
              yAxisIndex: 1
            },
            {
              type: 'bar',
              xAxisIndex: 1,
              yAxisIndex: 1
            }
          ]
        }
        chart.setOption(option)
      </script>
    </body>
    
    </html>
    
  • 相关阅读:
    结束也是开始
    21.1 LogMiner
    20.4 使用FLASHBACK DATABASE 恢复数据库到先前状态
    结束也是开始
    21.2 DBVERIFY
    21.3 DBNEWID
    20.2 使用FlashBack Table 恢复表到先前状态
    21.2 DBVERIFY
    21.3 DBNEWID
    20.3 使用FLASHBACK TABLE 恢复被删除表
  • 原文地址:https://www.cnblogs.com/jianjie/p/14412588.html
Copyright © 2011-2022 走看看