缓存有效期与淘汰策略
有效期 TTL (Time to live)
设置有效期的作用:
- 节省空间
- 做到数据弱一致性,有效期失效后,可以保证数据的一致性
Redis的过期策略
过期策略通常有以下三种:
-
定时过期
每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。
setex('a', 300, 'aval') setex('b', 600, 'bval')
-
惰性过期
只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。
-
定期过期
每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。
expires字典会保存所有设置了过期时间的key的过期时间数据,其中,key是指向键空间中的某个键的指针,value是该键的毫秒精度的UNIX时间戳表示的过期时间。键空间是指该Redis集群中保存的所有键。
- 有效期 两点作用
- 对于缓存数据 一定要设置有效期
通用过期策略
-
定时过期
- 每个记录单独追踪有效期
-
惰性过期
- 只在使用数据的时候 判断数据是否过期
-
定期过期
- 每隔100ms 检查一下有哪些数据过期了
Redis选用的过期策略
-
惰性过期+定期过期
-
对于定期过期 ,在每100ms时,随机检测一部分数据是否过期
Redis中同时使用了惰性过期和定期过期两种过期策略。
Redis过期删除采用的是定期删除,默认是每100ms检测一次,遇到过期的key则进行删除,这里的检测并不是顺序检测,而是随机检测。那这样会不会有漏网之鱼?显然Redis也考虑到了这一点,当我们去读/写一个已经过期的key时,会触发Redis的惰性删除策略,直接回干掉过期的key
为什么不用定时删除策略?
定时删除,用一个定时器来负责监视key,过期则自动删除。虽然内存及时释放,但是十分消耗CPU资源。在大并发请求下,CPU要将时间应用在处理请求,而不是删除key,因此没有采用这一策略.
定期删除+惰性删除是如何工作的呢?
定期删除,redis默认每个100ms检查,是否有过期的key,有过期key则删除。需要说明的是,redis不是每个100ms将所有的key检查一次,而是随机抽取进行检查(如果每隔100ms,全部key进行检查,redis岂不是卡死)。因此,如果只采用定期删除策略,会导致很多key到时间没有删除。
于是,惰性删除派上用场。也就是说在你获取某个key的时候,redis会检查一下,这个key如果设置了过期时间那么是否过期了?如果过期了此时就会删除。
采用定期删除+惰性删除就没其他问题了么?
不是的,如果定期删除没删除key。然后你也没即时去请求key,也就是说惰性删除也没生效。这样,redis的内存会越来越高。那么就应该采用内存淘汰机制。
缓存淘汰 eviction
Redis自身实现了缓存淘汰
Redis的内存淘汰策略是指在Redis的用于缓存的内存不足时,怎么处理需要新写入且需要申请额外空间的数据。
- noeviction:当内存不足以容纳新写入数据时,新写入操作会报错。
- allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的key。
- allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个key。
- volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的key。
- volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个key。
- volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的key优先移除。
redis 4.x 后支持LFU策略,最少频率使用
- allkeys-lfu
- volatile-lfu
LRU
LRU(Least recently used,最近最少使用)
LRU算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。
基本思路
- 新数据插入到列表头部;
- 每当缓存命中(即缓存数据被访问),则将数据移到列表头部;
- 当列表满的时候,将列表尾部的数据丢弃。
LFU
LFU(Least Frequently Used 最近最少使用算法)
它是基于“如果一个数据在最近一段时间内使用次数很少,那么在将来一段时间内被使用的可能性也很小”的思路。
LFU需要定期衰减。
淘汰策略
计算机内存中 (内存淘汰策略)
redis 内存淘汰策略
两种常用算法
-
LRU 以操作过的时间选择
[ 最近使用的 {user_4} {user_3} {user_2} {user_1} X ] 最早已使用过的 添加 {user_5} ? [ 最近使用的 {user_5} {user_4} {user_3} {user_2} ] 操作过user_2的数据后 [ 最近使用的 {user_2} {user_5} {user_4} {user_3} ]
-
LFU Least Frequently Used 以次数 频率来选择
[ ({user_4}, 3000) ({user_1}, 3) ({user_3}, 2680) ({user_2}, 50) ] 添加 {user_5} ? [ 选择使用累计次数最少的淘汰 ({user_4}, 3000) ({user_5}, 1) ({user_3}, 2680) ({user_2}, 50) ] 操作过user_2的数据后 [ ({user_4}, 3000) ({user_5}, 1) ({user_3}, 2680) ({user_2}, 51) ] user_6
LFU 效果会好一点,但是有隐含问题
定期衰减 每过一段时间,所有记录的此时减半
Redis淘汰策略的配置
- maxmemory 最大使用内存数量
- maxmemory-policy noeviction 淘汰策略
思考题
mySQL里有2000w数据,redis中只存20w的数据,如何保证redis中的数据都是热点数据
头条项目方案
- 缓存数据都设置有效期
- 配置redis,使用volatile-lru