zoukankan      html  css  js  c++  java
  • HDU6576 Worker

    Worker

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
    Total Submission(s): 1120    Accepted Submission(s): 275

    Problem Description

    Avin meets a rich customer today. He will earn 1 million dollars if he can solve a hard problem. There are n warehouses and m workers. Any worker in the i-th warehouse can handle ai orders per day. The customer wonders whether there exists one worker assignment method satisfying that every warehouse handles the same number of orders every day. Note that each worker should be assigned to exactly one warehouse and no worker is lazy when working.

    Input

    The first line contains two integers n (1 ≤ n ≤ 1, 000), m (1 ≤ m ≤ 10^18). The second line contains n integers. The i-th integer ai (1 ≤ ai ≤ 10) represents one worker in the i-th warehouse can handle ai orders per day.

    Output

    If there is a feasible assignment method, print "Yes" in the first line. Then, in the second line, print n integers with the i-th integer representing the number of workers assigned to the i-th warehouse.
    Otherwise, print "No" in one line. If there are multiple solutions, any solution is accepted.

    Sample Input

    2 6 1 2 2 5 1 2

    Sample Output

    Yes 4 2 No

    Source

    2019CCPC-江西省赛(重现赛)- 感谢南昌大学

    做这题要注意求最小公倍数的写法,以及用long long整型,剩下的都是赤裸裸的硬算。

    还要注意代码有一处求当前输入的所有数据的最小公倍数,具体代码上有标注。

    image

    #include <iostream>
    #include <cstdio>
    #include <cmath>
    #include <algorithm>
    using namespace std;
    typedef long long ll;
    ll gcd(ll a,ll b){
        if(b==0) return a;
        return gcd(b,a%b);
    }
    ll lcm(ll a,ll b){
        return a*b/gcd(b,a%b);
    }
    int main(){
        ll n,m;
        ll a[1010];
        ll sum;
        while(scanf("%lld%lld",&n,&m)!=EOF){
            sum=0;
            ll x=1;
            for(ll i=0;i<n;i++){
                scanf("%lld",&a[i]);
                x=lcm(max(x,a[i]),min(x,a[i]));//这一处用的挺巧妙的。 
            }
            for(ll i=0;i<n;i++){
                sum+=(x/a[i]);
            }
            if(m%sum!=0) printf("No
    ");
            else {
            ll c=m/sum;
            printf("Yes
    ");
            printf("%lld",c*(x/a[0]));
            for(ll i=1;i<n;i++){
                printf(" %lld",c*(x/a[i]));
              }
              cout<<endl;
            }
        }
        return 0; 
    }
    天晴了,起飞吧
  • 相关阅读:
    tensflow安装
    Dubbo的服务注册--Zookeeper
    Dubbo源码分析之Exporter---服务暴露(本地和远程)
    Dubbo源码分析之XML的Bean解析
    Dubbo的SPI可扩展机制的源码分析
    Dubbo源码分析(三)-----消费者引用服务启动时序
    导出mysql的表结构的字段为excel
    Dubbo源码分析(二)-----提供者启动过程分析
    dubbo的api的配置(基于注解的配置)
    Dubbo源码分析(一)-----包结构的分析
  • 原文地址:https://www.cnblogs.com/jianqiao123/p/11255403.html
Copyright © 2011-2022 走看看