zoukankan      html  css  js  c++  java
  • Milk Pails(BFS)

    Milk Pails

    时间限制: 1 Sec  内存限制: 64 MB
    提交: 16  解决: 4
    [提交][状态][讨论版]

    题目描述

    Farmer John has received an order for exactly M units of milk (1≤M≤200) that he needs to fill right away. Unfortunately, his fancy milking machine has just become broken, and all he has are two milk pails of integer sizes X and Y (1≤X,Y≤100) with which he can measure milk. Both pails are initially empty. Using these two pails, he can perform up to K of the following types of operations (1≤K≤100):

    - He can fill either pail completely to the top.

    - He can empty either pail.

    - He can pour the contents of one pail into the other, stopping when the former becomes empty or the latter becomes full (whichever of these happens first).

    Although FJ realizes he may not be able to end up with exactly M total units of milk in the two pails, please help him compute the minimum amount of error between M and the total amount of milk in the two pails. That is, please compute the minimum value of |M−M′| such that FJ can construct M′ units of milk collectively between the two pails.

    输入

    The first, and only line of input, contains X, Y, K, and M.

    输出

    Output the smallest distance from M to an amount of milk FJ can produce.

    样例输入

    14 50 2 32
    

    样例输出

    18
    【分析】这跟昨天的 母亲的牛奶那题特别像,两个瓶,一开始都为空,有三种操作,将一个瓶灌满,讲一个瓶清空,然后就是将一个瓶网另一个瓶倒,直到到完
    或者到满。将昨天的代码稍微改了一下。
    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <time.h>
    #include <string>
    #include <map>
    #include <stack>
    #include <vector>
    #include <set>
    #include <queue>
    #define inf 0x3f3f3f3f
    #define mod 1000000007
    typedef long long ll;
    using namespace std;
    const int N=210;
    int n,dp[N],len;
    int w[N][N];
    int g[3];
    int a,b,c;
    int X,Y,K,M;
    set<int>p;
    int minn=inf;
    struct man {
        int x,y;
        int step;
    };
    
    void bfs() {
        w[0][0]=1;
        queue<man>q;
        man s;
        s.x=0;
        s.y=0;
        s.step=0;
        q.push(s);
        while(!q.empty()) {
            man t=q.front();
            q.pop();
            minn=min(minn,abs((t.x+t.y)-M));
            if(t.step==K)continue;
            int f[3];
             f[0]=t.x;
                f[1]=t.y;
             if(!w[f[0]][0]){man kk;kk.x=f[0];kk.y=0;kk.step=t.step+1;w[f[0]][0]=1;q.push(kk);}
             if(!w[f[0]][g[1]]){man kk;kk.x=f[0];kk.y=g[1];kk.step=t.step+1;w[f[0]][g[1]]=1;q.push(kk);}
             if(!w[0][f[1]]){man kk;kk.x=0;kk.y=f[1];kk.step=t.step+1;w[0][f[1]]=1;q.push(kk);}
             if(!w[g[0]][f[1]]){man kk;kk.x=g[0];kk.y=f[1];kk.step=t.step+1;w[g[0]][f[1]]=1;q.push(kk);}
            for(int i=0; i<2; i++) {
                f[0]=t.x;
                f[1]=t.y;
                if(f[i]==0)continue;
                for(int j=0; j<2; j++) {
                    f[0]=t.x;
                    f[1]=t.y;
                    man k;
                    if(i==j||f[j]==g[j])continue;
                    if(f[i]+f[j]>=g[j]) {
                        f[i]=f[i]-(g[j]-f[j]);
                        f[j]=g[j];
                        // printf("@%d %d
    ",f[i],f[j]);
                    } else if(f[i]+f[j]<g[j]) {
                        f[j]+=f[i];
                        f[i]=0;
    
                    }
                    k.x=f[0];
                    k.y=f[1];
                    // printf("!!!%d %d %d
    ",k.x,k.y,k.z);
                    if(w[k.x][k.y]==0) {
                            k.step=t.step+1;
                        q.push(k);
                        w[k.x][k.y]=1;
                    }
                }
            }
        }
    }
    
    int main() {
        memset(w,0,sizeof(w));
    
        cin>>X>>Y>>K>>M;
        g[0]=X;
        g[1]=Y;
        bfs();
       cout<<minn<<endl;
        return 0;
    }
    View Code
  • 相关阅读:
    JavaScript:for循环中let与var变量的绑定
    ECAMScript中的let和const
    HTML中的a标签
    jQuery中的事件处理(移除绑定)
    jQuery中的事件处理(事件绑定)
    jQuery中的事件处理(页面加载响应事件)
    jQuery对元素的CSS样式操作(通过修改CSS属性实现)
    jQuery对元素的CSS样式操作(通过修改CSS类实现)
    jQuery对DOM节点进行操作(包裹节点)
    jQuery对DOM节点进行操作(遍历节点)
  • 原文地址:https://www.cnblogs.com/jianrenfang/p/5722876.html
Copyright © 2011-2022 走看看