zoukankan      html  css  js  c++  java
  • URAL 1320 Graph Decomposition(并查集)

    1320. Graph Decomposition

    Time limit: 0.5 second
    Memory limit: 64 MB
    There is a simple graph with an even number of edges. You are to define if it is possible to present it by the set of pairs of adjacent edges (having a common vertex).

    Input

    contains a sequence of the numbers pairs. Each pair denotes vertices identifiers of one edge. All the identifiers are integers from 1 to 1000. You may assume that there are no loops and multiple edges in the graph defined by the input data.

    Output

    “1” (without quotation marks), if the decomposition is possible and “0” otherwise.

    Samples

    inputoutput
    1 2
    2 3
    3 1
    1 10
    
    1
    
    1 2
    2 3
    3 1
    4 10
    
    0
    

    Problem Author: Idea: Alexander Petrov, prepared by Alexander Petrov, Leonid Volkov

    【分析】每次删除相邻的两条边,问是否能全部删除干净。偶数条边,每条边两个顶点,也就是说如果能删除干净,则每个连通块中所有点的度数之和能够整除4.

    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <algorithm>
    #include <cmath>
    #include <string>
    #include <map>
    #include <stack>
    #include <queue>
    #include <vector>
    #define inf 0x3f3f3f3f
    #define met(a,b) memset(a,b,sizeof a)
    typedef long long ll;
    using namespace std;
    const int N = 1005;
    const int M = 24005;
    int edg[N][N],vis[N];
    int in[N],parent[N],n;
    int Find(int x)
    {
        if(parent[x]!=x)parent[x]=Find(parent[x]);
        return parent[x];
    }
    void Union(int x,int y)
    {
        x=Find(x);y=Find(y);
        if(x==y)return;
        parent[y]=x;
    }
    int main()
    {
        int u,v,num=1;
        for(int i=1;i<N;i++)parent[i]=i;n=0;
        while(~scanf("%d%d",&u,&v)){
            Union(u,v);
            in[u]++;in[v]++;
            n=max(n,max(u,v));
        }
        bool ok=true;
        for(int i=1;i<=n;i++){
            vis[Find(i)]+=in[i];
        }
        for(int i=1;i<=n;i++){
            if(vis[Find(i)]%4!=0)ok=false;
        }
        if(ok)puts("1");
        else puts("0");
        return 0;
    }
  • 相关阅读:
    Java正则表达式教程及示例
    MySQL 事务
    MySQL 正则表达式
    常用函数 __MySQL必知必会
    使用MySQL正则表达式 __MySQL必知必会
    首先使用flex制作table
    javascript原生调用摄像头
    网页背景图片随机
    网页背景视频的实现
    网站无法显示logo?
  • 原文地址:https://www.cnblogs.com/jianrenfang/p/5988008.html
Copyright © 2011-2022 走看看