zoukankan      html  css  js  c++  java
  • Codeforces Round #119 (Div. 2) Cut Ribbon(DP)

    Cut Ribbon
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Polycarpus has a ribbon, its length is n. He wants to cut the ribbon in a way that fulfils the following two conditions:

    • After the cutting each ribbon piece should have length ab or c.
    • After the cutting the number of ribbon pieces should be maximum.

    Help Polycarpus and find the number of ribbon pieces after the required cutting.

    Input

    The first line contains four space-separated integers nab and c (1 ≤ n, a, b, c ≤ 4000) — the length of the original ribbon and the acceptable lengths of the ribbon pieces after the cutting, correspondingly. The numbers ab and c can coincide.

    Output

    Print a single number — the maximum possible number of ribbon pieces. It is guaranteed that at least one correct ribbon cutting exists.

    Examples
    input
    5 5 3 2
    output
    2
    input
    7 5 5 2
    output
    2
    Note

    In the first example Polycarpus can cut the ribbon in such way: the first piece has length 2, the second piece has length 3.

    In the second example Polycarpus can cut the ribbon in such way: the first piece has length 5, the second piece has length 2.

    【题意】给你一根绳子称为d,现在要将绳子分成若干段,使得每一段的长度必须是a,b,c中的一个,求分得的最多段数。

    【分析】简单DP,dp[i]代表切到当前位置获得的最大段数,慢慢更新即可。

    #include <bits/stdc++.h>
    #define pb push_back
    #define mp make_pair
    #define vi vector<int>
    #define inf 0x3f3f3f3f
    using namespace std;
    typedef long long LL;
    const int N = 1e5+50;
    int n;
    int a,b,c;
    int dp[N];
    void solve(int i,int x){
        if(i-x==0)dp[i]=max(dp[i],1);
        else if(i-x<0)dp[i]=max(dp[i],0);
        else dp[i]=max(dp[i],dp[i-x]==0?0:dp[i-x]+1);
    }
    int main(){
        scanf("%d%d%d%d",&n,&a,&b,&c);
        for(int i=1;i<=n;i++){
            solve(i,a);
            solve(i,b);
            solve(i,c);
        }
        printf("%d
    ",dp[n]);
        return 0;
    }
  • 相关阅读:
    从零开始学Oracle—约束(三)
    ewebeditor安全解决方案 j神
    12款很棒的浏览器兼容性测试工具推荐 j神
    文件无法删除,找不到指定文件-解决办法 j神
    如何应对Global.asa木马 j神
    2012年最佳免费网站和移动应用 PSD 界面素材揭晓 j神
    PHP上传RAR压缩包并解压目录 j神
    数据库查询语句:left join ... on ... j神
    js 与或运算符 || && 妙用 j神
    实时监听输入框值变化的完美方案:oninput & onpropertychange j神
  • 原文地址:https://www.cnblogs.com/jianrenfang/p/7226075.html
Copyright © 2011-2022 走看看