zoukankan      html  css  js  c++  java
  • Codeforces Round #119 (Div. 2) Cut Ribbon(DP)

    Cut Ribbon
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Polycarpus has a ribbon, its length is n. He wants to cut the ribbon in a way that fulfils the following two conditions:

    • After the cutting each ribbon piece should have length ab or c.
    • After the cutting the number of ribbon pieces should be maximum.

    Help Polycarpus and find the number of ribbon pieces after the required cutting.

    Input

    The first line contains four space-separated integers nab and c (1 ≤ n, a, b, c ≤ 4000) — the length of the original ribbon and the acceptable lengths of the ribbon pieces after the cutting, correspondingly. The numbers ab and c can coincide.

    Output

    Print a single number — the maximum possible number of ribbon pieces. It is guaranteed that at least one correct ribbon cutting exists.

    Examples
    input
    5 5 3 2
    output
    2
    input
    7 5 5 2
    output
    2
    Note

    In the first example Polycarpus can cut the ribbon in such way: the first piece has length 2, the second piece has length 3.

    In the second example Polycarpus can cut the ribbon in such way: the first piece has length 5, the second piece has length 2.

    【题意】给你一根绳子称为d,现在要将绳子分成若干段,使得每一段的长度必须是a,b,c中的一个,求分得的最多段数。

    【分析】简单DP,dp[i]代表切到当前位置获得的最大段数,慢慢更新即可。

    #include <bits/stdc++.h>
    #define pb push_back
    #define mp make_pair
    #define vi vector<int>
    #define inf 0x3f3f3f3f
    using namespace std;
    typedef long long LL;
    const int N = 1e5+50;
    int n;
    int a,b,c;
    int dp[N];
    void solve(int i,int x){
        if(i-x==0)dp[i]=max(dp[i],1);
        else if(i-x<0)dp[i]=max(dp[i],0);
        else dp[i]=max(dp[i],dp[i-x]==0?0:dp[i-x]+1);
    }
    int main(){
        scanf("%d%d%d%d",&n,&a,&b,&c);
        for(int i=1;i<=n;i++){
            solve(i,a);
            solve(i,b);
            solve(i,c);
        }
        printf("%d
    ",dp[n]);
        return 0;
    }
  • 相关阅读:
    我终于会手打lct了!
    [模板]Dijkstra-优先队列优化-单源最短路
    99999999海岛帝国后传:算法大会
    正在加载中。。。。。
    【题解】CF1054D Changing Array(异或,贪心)
    【题解】P4550 收集邮票(概率期望,平方期望)
    【题解】CF149D Coloring Brackets(区间 DP,记忆化搜索)
    【笔记】斜率优化 DP
    CSP2021 游记
    【题解】洛谷P1502 窗口的星星
  • 原文地址:https://www.cnblogs.com/jianrenfang/p/7226075.html
Copyright © 2011-2022 走看看