1. Palindrome Partitioning
https://leetcode.com/problems/palindrome-partitioning/
Given a string s, partition s such that every substring of the partition is a palindrome.
Return all possible palindrome partitioning of s.
For example, given s =
"aab"
,
Return[ ["aa","b"], ["a","a","b"] ]
/** * author : Jianxin Zhou * email:zhoujx0219@163.com * * 该题dfs函数原型如下: * void partitionHelper(const string &s, vector<vector<string>> &result, vector<string> &path, int pos) * * 以aaba举例。 * 1. 首先a为回文,然后对aba进行dfs * 2. 之后回溯到a时,以aa为回文,然后对ba做dfs * 3. 回溯到aa,试图以aab为回文,失败;试图以aaba为回文失败;结束。 * * 注意:如果能顺利的找到一组回文,那么pos最终会等于s.size(),此时可以push到result。 * 如果找不到,例如之前的aaba不是回文,那么就会直接退出循环,没有机会执行下一步递归,也就没有pos等于s.size了。 * * 实际上,此类题与真正的dfs的差别在于,dfs在回溯时,不会进行剪枝操作。而此类题,由于需要求出所有方案,所以需要剪枝。 * */ class Solution { public: vector<vector<string>> partition(string s) { vector<vector<string>> result; vector<string> path; partitionHelper(s, result, path, 0); return result; } private: void partitionHelper(const string &s, vector<vector<string>> &result, vector<string> &path, int pos) { // base case if (pos == s.size()) { result.push_back(path); return; } for (int i = pos; i < s.size(); i++) { if (isPalindrome(s, pos, i)) { path.push_back(s.substr(pos, i - pos + 1)); partitionHelper(s, result, path, i + 1); path.pop_back(); } } } bool isPalindrome(const string &s, int start, int end) { while (start < end) { if (s[start] == s[end]) { start++; end--; } else { break; } } return start >= end; } };
2. Permutations
https://leetcode.com/problems/permutations/
Given a collection of numbers, return all possible permutations.
For example,
[1,2,3]
have the following permutations:[1,2,3]
,[1,3,2]
,[2,1,3]
,[2,3,1]
,[3,1,2]
, and[3,2,1]
.
具体可参加我之前写的文章:[LintCode] Permutations
/** * 思路:dfs。 * * 以123举例, * 1. 首先以1作为head,然后对23做dfs * 2. 回溯到1, 以2作为head,对13做dfs * 3. 最后回溯到2,以3作为head,对12做dfs * * 注意:例如以2为head,对其余元素做dfs时,那么2不能再取,因此在进行下一轮dfs时,需要标记2为以访问过 * */ class Solution { public: vector<vector<int>> permute(vector<int>& nums) { vector<vector<int>> result; vector<int> path; bool visited[nums.size()]; for(int i = 0; i < nums.size(); i++) { visited[i] = false; } sort(nums.begin(), nums.end()); dfs(nums, result, path, visited); return result; } private: void dfs(const vector<int> &nums, vector<vector<int>> &result, vector<int> &path, bool visited[]) { // base case if (path.size() == nums.size()) { result.push_back(path); return; } for (int i = 0; i < nums.size(); i++) { if (visited[i] == false) { path.push_back(nums[i]); visited[i] = true; dfs(nums, result, path, visited); path.pop_back(); visited[i] = false; } } } };
3. Permutations II
https://leetcode.com/problems/permutations-ii/
Given a collection of numbers that might contain duplicates, return all possible unique permutations.
For example,
[1,1,2]
have the following unique permutations:[1,1,2]
,[1,2,1]
, and[2,1,1]
.
要点在于保证相同的数不在同一位置出现两次以上,可以参见我写的这篇文章:[LintCode] Permutations II
class Solution { public: /** * @param nums: A list of integers. * @return: A list of unique permutations. */ vector<vector<int> > permuteUnique(vector<int> &nums) { // write your code here vector<vector<int>> paths; if (nums.empty()) { return paths; } sort(nums.begin(), nums.end()); bool *visited = new bool[nums.size()](); vector<int> path; permuteUniqueHelper(nums, visited, path, paths); return paths; } private: void permuteUniqueHelper(const vector<int> &nums, bool visited[], vector<int> &path, vector<vector<int>> &paths) { if (path.size() == nums.size()) { paths.push_back(path); return; } for (int ix = 0; ix < nums.size(); ix++) { if (visited[ix] == true || ix > 0 && nums[ix - 1] == nums[ix] && visited[ix - 1] == false) { continue; } visited[ix] = true; path.push_back(nums[ix]); permuteUniqueHelper(nums, visited, path, paths); visited[ix] = false; path.pop_back(); } } };
4 Subsets
https://leetcode.com/problems/subsets/
Given a set of distinct integers, nums, return all possible subsets.
Note:
- Elements in a subset must be in non-descending order.
- The solution set must not contain duplicate subsets.
For example,
If nums =[1,2,3]
, a solution is:[ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ]
/** * 思路:找方案,一般都是使用搜索。 * * 以123为例,在递归还没有开始前,先把空集push到result中,之后: * 1. 以1位head,对23做dfs,所以pos需要加1,用于分支限界(1 12 13 123) * 2. 回溯到1,以2为head,对3做dfs (2 23) * 3. 回溯到3,以3为head,之后循环结束。 (3) * * */ class Solution { public: vector<vector<int>> subsets(vector<int>& nums) { // ensure that elements in a subset must be in non-descending order. sort(nums.begin(), nums.end()); vector<vector<int>> res; vector<int> path; dfs(nums, res, path, 0); return res; } private: void dfs(const vector<int> &nums, vector<vector<int>> &res, vector<int> &path, int pos) { res.push_back(path); for (int i = pos; i < nums.size(); i++) { path.push_back(nums[i]); dfs(nums, res, path, i + 1); path.pop_back(); } } };
5. Subsets II
https://leetcode.com/problems/subsets-ii/
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
- Elements in a subset must be in non-descending order.
- The solution set must not contain duplicate subsets.
For example,
If nums =[1,2,2]
, a solution is:[ [2], [1], [1,2,2], [2,2], [1,2], [] ]
同一位置上,前面取过的数,后面就不要再重复取了,当然当i = pos时,这个数必然是第一次取。
class Solution { public: vector<vector<int>> subsetsWithDup(vector<int> &nums) { sort(nums.begin(), nums.end()); vector<vector<int>> res; vector<int> path; dfs(nums, res, path, 0); return res; } private: void dfs(const vector<int> &nums, vector<vector<int>> &res, vector<int> &path, int pos) { res.push_back(path); for (int i = pos; i < nums.size(); i++) { if (i != pos && nums[i] == nums[i - 1]) { continue; } path.push_back(nums[i]); dfs(nums, res, path, i + 1); path.pop_back(); } } };
6 Restore IP Addresses
https://leetcode.com/problems/restore-ip-addresses/
Given a string containing only digits, restore it by returning all possible valid IP address combinations.
For example:
Given"25525511135"
,return
["255.255.11.135", "255.255.111.35"]
. (Order does not matter)
/** * 该题思路与求回文划分相似 */ class Solution { public: vector<string> restoreIpAddresses(string s) { vector<string> res; size_t len = s.size(); if (len < 4 || len > 12) { return res; } vector<string> path; dfs(s, res, path, 0); return res; } private: void dfs(const string &s, vector<string> &res, vector<string> &path, int pos) { // base case if (path.size() == 4) { if (pos != s.size()) { return; } string returnElem; for (const auto &elem : path) { returnElem += elem; returnElem += "."; } returnElem.erase(returnElem.end() - 1); res.push_back(returnElem); return; } for (int i = pos; i < s.size() && i < pos + 3; i++) { string tmp = s.substr(pos, i - pos + 1); if (isValid(tmp)) { path.push_back(tmp); dfs(s, res, path, i + 1); path.pop_back(); } } } bool isValid(const string &s) { // 排除 055 之类的数字 if (s[0] == '0' && s.size() > 1) { return false; } int digit = atoi(s.c_str()); return 0 <= digit && digit <= 255; } };
7 N-Queens
http://www.lintcode.com/en/problem/n-queens/#
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where
'Q'
and'.'
both indicate a queen and an empty space respectively.For example,
There exist two distinct solutions to the 4-queens puzzle:[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]
/** * 思路:一行一行的取数,例如第一行的皇后放在第1个位置,第二行的皇后放在第3个位置, * 以此类推,直到最后一行的皇后放在正确的位置,如此视为一个方案,push到result中 * * 显然,本题使用dfs,每一行可取的位置从0-N-1, * 需要注意的是,每一行在取位置的时候,需要判断有效性(是否可以相互攻击)。 */ class Solution { public: /** * Get all distinct N-Queen solutions * @param n: The number of queens * @return: All distinct solutions * For example, A string '...Q' shows a queen on forth position */ vector<vector<string> > solveNQueens(int n) { vector<vector<string>> res; vector<int> visitedCol; if (n <= 0) { return res; } dfs(n, res, visitedCol); return res; } private: void dfs(const int n, vector<vector<string>> &res, vector<int> &visitedCol) { // base case if (visitedCol.size() == n) { res.push_back(draw(visitedCol)); return; } for (int i = 0; i < n; i++) { if (!isValid(visitedCol, i)) { continue; } visitedCol.push_back(i); dfs(n, res, visitedCol); visitedCol.pop_back(); } } bool isValid(const vector<int> &visitedCol, const int currentCol) { size_t currentRow = visitedCol.size(); for (int rowIndex = 0; rowIndex < visitedCol.size(); rowIndex++) { if (currentCol == visitedCol[rowIndex]) { return false; } if (currentRow + currentCol == rowIndex + visitedCol[rowIndex]) { return false; } if (currentRow - currentCol == rowIndex - visitedCol[rowIndex]) { return false; } } return true; } vector<string> draw(const vector<int> &visitedCol) { vector<string> ret; string row; for (const auto &elem : visitedCol) { row.clear(); for (int i = 0; i < visitedCol.size(); i++) { if (i == elem) { row += "Q"; } else { row += "."; } } ret.push_back(row); } return ret; } };
8 Sudoku Solver
https://leetcode.com/problems/sudoku-solver/
Write a program to solve a Sudoku puzzle by filling the empty cells.
Empty cells are indicated by the character
'.'
.You may assume that there will be only one unique solution.
A sudoku puzzle...
...and its solution numbers marked in red.
class Solution { public: void solveSudoku(vector<vector<char>>& board) { dfs (board, 0, 0); } private: /** * 该题需要对sudoku中每一个以‘.’标记的方格进行dfs, * 1. 如果对当前方格的以1-9这9个数字进行遍历,都不合法,那么不会再往下一个方格进行dfs,直接回溯到上一个方格取下一个数。 * 2. 如果当前方格所取的数合法,那么继续对下一个方格进行dfs,依次下去如果一直合法,那么直到走到sudoku中的最后一个需要放数字的方格, * 尝试完它的所有选择,再往上回溯。 * 然后,在这边我们只需要一个可行解即可,因此只要当前方格合法,往下的dfs返回true,那么即为一个解,直接返回。 * * * */ bool dfs(vector<vector<char>> &board, int x, int y) { for (int i = 0; i < 9; i++) { for (int j = 0; j < 9; j++) { //dfs if (board[i][j] == '.') { // k从0-9走完才算走完,但是此处我们只要有一个解,就可以返回了,因此在以下循环中设置了return语句 for (int k = 0; k < 9; k++) { bool flag; if (!isValid(board, i ,j, k)) { continue; } board[i][j] = '1' + k; if (j != 8) { flag = dfs(board, i, j + 1); } else { flag = dfs(board, i + 1, 0); } // 当前合法&&下一轮dfs合法,说明找到解 if (flag) { return true; } board[i][j] = '.'; } // 遍历完9个数,仍然找不到合适的解,则返回false return false; } } } // 当所有各自都走完,自然返回true(注意只有当前合法,才会继续往下走,继续往下走的最终结果是越了sudoku的界限) return true; } bool isValid(const vector<vector<char>> &board, int x, int y, int k) { int i, j; for (i = 0; i < 9; i++) // 检查 y 列 if (i != x && board[i][y] == '1' + k) return false; for (j = 0; j < 9; j++) // 检查 x 行 if (j != y && board[x][j] == '1' + k) return false; for (i = 3 * (x / 3); i < 3 * (x / 3 + 1); i++) for (j = 3 * (y / 3); j < 3 * (y / 3 + 1); j++) if ((i != x || j != y) && board[i][j] == '1' + k) return false; return true; } };
小结1
做搜索的题目,最关键的是要知道对什么对象进行dfs,例如,在sudoku中是对每一个以“.”标记的方格进行dfs,在回文划分中,是对每一个划分的位置进行dfs,在8妃问题中,是对每一行妃子可以在的位置进行dfs。
其次,dfs时,我们需要判断所取的每一个解是否是有效的,最好写一个函数来专门做这件事情。只要当当前对象dfs的数值有效时,才会继续往对下一个对象进行dfs,否则就直接向上回溯了(这点可以参见sudoku中的解释)。
最后,对于每次dfs时,可以对范围进行分支限界。例如回文划分、subset等。
小结2
值得注意的是:到底要对多少对象进行dfs,有时候是很明显的,例如8妃和sudoku问题,8妃就是对8行依次dfs,sudoku就是对所有方格进行dfs。但有时,总共要对多少对象进行dfs并不明显。dfs的递归基要处理的就是dfs完多少个对象就一定要返回(不然就无限dfs下去了)。当然,在sudoku问题中,方格的循环走完返回,这是一个隐含的递归基。
总结:dfs函数中,递归基处理的是dfs多少个对象就要返回。而每次dfs的for循环,往往是每一次dfs的范围。当递归栈最顶层的那个dfs循环走完,搜素就完成了。
小结3
在图论中,往往是从某一个点开始往下dfs,dfs的范围是当前node的所有neighbor,与我们通常的搜索问题不同的是,图论中的dfs在回溯时不会剪枝,总之,找到一条路径就结束了。