zoukankan      html  css  js  c++  java
  • [算法专题] 深度优先搜索&回溯剪枝

    1. Palindrome Partitioning

    https://leetcode.com/problems/palindrome-partitioning/

    Given a string s, partition s such that every substring of the partition is a palindrome.

    Return all possible palindrome partitioning of s.

    For example, given s = "aab",
    Return

      [
        ["aa","b"],
        ["a","a","b"]
      ]
    /**
     * author : Jianxin Zhou
     * email:zhoujx0219@163.com
     * 
     * 该题dfs函数原型如下:
     * void partitionHelper(const string &s, vector<vector<string>> &result, vector<string> &path, int pos)
     * 
     * 以aaba举例。
     * 1. 首先a为回文,然后对aba进行dfs
     * 2. 之后回溯到a时,以aa为回文,然后对ba做dfs
     * 3. 回溯到aa,试图以aab为回文,失败;试图以aaba为回文失败;结束。
     * 
     * 注意:如果能顺利的找到一组回文,那么pos最终会等于s.size(),此时可以push到result。
     *       如果找不到,例如之前的aaba不是回文,那么就会直接退出循环,没有机会执行下一步递归,也就没有pos等于s.size了。
     * 
     * 实际上,此类题与真正的dfs的差别在于,dfs在回溯时,不会进行剪枝操作。而此类题,由于需要求出所有方案,所以需要剪枝。
     *
     */
    
    
    class Solution {
    public:
        vector<vector<string>> partition(string s) {
            vector<vector<string>> result;
            vector<string> path;
            partitionHelper(s, result, path, 0);
            return result;
        }
        
    private:
        void partitionHelper(const string &s, vector<vector<string>> &result, vector<string> &path, int pos) {
            // base case
            if (pos == s.size()) {
                result.push_back(path);
                return;
            }
            
            for (int i = pos; i < s.size(); i++) {
                if (isPalindrome(s, pos, i)) {
                    path.push_back(s.substr(pos, i - pos + 1));
                    partitionHelper(s, result, path, i + 1);
                    path.pop_back();
                }
            }
        }
        
        bool isPalindrome(const string &s, int start, int end) {
            while (start < end) {
                if (s[start] == s[end]) {
                    start++;
                    end--;
                } else {
                    break;
                }
            }
            
            return start >= end;
        }
    };

    2. Permutations

    https://leetcode.com/problems/permutations/

    Given a collection of numbers, return all possible permutations.

    For example,
    [1,2,3] have the following permutations:
    [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], and [3,2,1].

    具体可参加我之前写的文章:[LintCode] Permutations

    /**
     * 思路:dfs。
     * 
     * 以123举例,
     * 1. 首先以1作为head,然后对23做dfs
     * 2. 回溯到1, 以2作为head,对13做dfs
     * 3. 最后回溯到2,以3作为head,对12做dfs
     * 
     * 注意:例如以2为head,对其余元素做dfs时,那么2不能再取,因此在进行下一轮dfs时,需要标记2为以访问过
     * 
     */
    
    
    class Solution {
    public:
        vector<vector<int>> permute(vector<int>& nums) {
            vector<vector<int>> result;
            vector<int> path;
            
            bool visited[nums.size()];
            for(int i = 0; i < nums.size(); i++) {
                visited[i] = false;
            }
            
            sort(nums.begin(), nums.end());
            dfs(nums, result, path, visited);
            return result;
        }
        
    private:
        void dfs(const vector<int> &nums, vector<vector<int>> &result, vector<int> &path, bool visited[]) {
            // base case
            if (path.size() == nums.size()) {
                result.push_back(path);
                return;
            }
    
            for (int i = 0; i < nums.size(); i++) {
                if (visited[i] == false) {
                    path.push_back(nums[i]);
                    visited[i] = true;
                    dfs(nums, result, path, visited);
                    path.pop_back();
                    visited[i] = false;
                }
                
            }
        }
    };

    3. Permutations II

    https://leetcode.com/problems/permutations-ii/

    Given a collection of numbers that might contain duplicates, return all possible unique permutations.

    For example,
    [1,1,2] have the following unique permutations:
    [1,1,2], [1,2,1], and [2,1,1].

    要点在于保证相同的数不在同一位置出现两次以上,可以参见我写的这篇文章:[LintCode] Permutations II

    class Solution {
    public:
        /**
         * @param nums: A list of integers.
         * @return: A list of unique permutations.
         */
        vector<vector<int> > permuteUnique(vector<int> &nums) {
            // write your code here
            vector<vector<int>> paths;
            if (nums.empty()) {
                return paths;
            }
             
            sort(nums.begin(), nums.end());
            bool *visited = new bool[nums.size()]();
            vector<int> path;
            permuteUniqueHelper(nums, visited, path, paths);
            return paths;
        }
         
    private:
        void permuteUniqueHelper(const vector<int> &nums,
                                 bool visited[],
                                 vector<int> &path,
                                 vector<vector<int>> &paths) {
            if (path.size() == nums.size()) {
                paths.push_back(path);
                return;
            } 
             
            for (int ix = 0; ix < nums.size(); ix++) {
                if (visited[ix] == true || ix > 0 && nums[ix - 1] == nums[ix] && visited[ix - 1] == false) {
                    continue;    
                }
                 
                visited[ix] = true;
                path.push_back(nums[ix]);
                permuteUniqueHelper(nums, visited, path, paths);
                visited[ix] = false;
                path.pop_back();
            }
        }
    };

    4 Subsets

    https://leetcode.com/problems/subsets/

    Given a set of distinct integers, nums, return all possible subsets.

    Note:

    • Elements in a subset must be in non-descending order.
    • The solution set must not contain duplicate subsets.

    For example,
    If nums = [1,2,3], a solution is:

    [
      [3],
      [1],
      [2],
      [1,2,3],
      [1,3],
      [2,3],
      [1,2],
      []
    ]
    /**
     * 思路:找方案,一般都是使用搜索。
     * 
     * 以123为例,在递归还没有开始前,先把空集push到result中,之后:
     * 1. 以1位head,对23做dfs,所以pos需要加1,用于分支限界(1 12 13 123)
     * 2. 回溯到1,以2为head,对3做dfs (2 23)
     * 3. 回溯到3,以3为head,之后循环结束。 (3)
     * 
     * 
     */
    
    
    
    class Solution {
    public:
        vector<vector<int>> subsets(vector<int>& nums) {
            // ensure that elements in a subset must be in non-descending order.
            sort(nums.begin(), nums.end());
            
            vector<vector<int>> res;
            vector<int> path;
            dfs(nums, res, path, 0);
            return res;
        }
        
    private:
        void dfs(const vector<int> &nums, vector<vector<int>> &res, vector<int> &path, int pos) {
            res.push_back(path);
            
            for (int i = pos; i < nums.size(); i++) {
                path.push_back(nums[i]);
                dfs(nums, res, path, i + 1);
                path.pop_back();
            }
        }
    };

    5. Subsets II

    https://leetcode.com/problems/subsets-ii/

    Given a collection of integers that might contain duplicates, nums, return all possible subsets.

    Note:

    • Elements in a subset must be in non-descending order.
    • The solution set must not contain duplicate subsets.

    For example,
    If nums = [1,2,2], a solution is:

    [
      [2],
      [1],
      [1,2,2],
      [2,2],
      [1,2],
      []
    ]

    同一位置上,前面取过的数,后面就不要再重复取了,当然当i = pos时,这个数必然是第一次取。

    class Solution {
    public:
        vector<vector<int>> subsetsWithDup(vector<int> &nums) {
            sort(nums.begin(), nums.end());
            vector<vector<int>> res;
            vector<int> path;
            dfs(nums, res, path, 0);
            return res;
        }
        
    private:
        void dfs(const vector<int> &nums, vector<vector<int>> &res, vector<int> &path, int pos) {
            res.push_back(path);
            
            for (int i = pos; i < nums.size(); i++) {
                if (i != pos && nums[i] == nums[i - 1]) {
                    continue;
                }
                
                path.push_back(nums[i]);
                dfs(nums, res, path, i + 1);
                path.pop_back();
            }
        }
    };

    6 Restore IP Addresses

    https://leetcode.com/problems/restore-ip-addresses/

    Given a string containing only digits, restore it by returning all possible valid IP address combinations.

    For example:
    Given "25525511135",

    return ["255.255.11.135", "255.255.111.35"]. (Order does not matter)

    /**
     * 该题思路与求回文划分相似
     */
    
    class Solution {
    public:
        vector<string> restoreIpAddresses(string s) {
            vector<string> res;
            
            size_t len = s.size();
            if (len < 4 || len > 12) {
                return res;
            }
            
    
            vector<string> path;
            dfs(s, res, path, 0);
            return res;
        }
        
    private:
        void dfs(const string &s, vector<string> &res, vector<string> &path, int pos) {
            // base case
            if (path.size() == 4) {
                if (pos != s.size()) {
                    return;
                }
                
                string returnElem;
                for (const auto &elem : path) {
                    returnElem += elem;
                    returnElem += ".";
                }
                returnElem.erase(returnElem.end() - 1);
                
                res.push_back(returnElem);
                return;
            }
            
            for (int i = pos; i < s.size() && i < pos + 3; i++) {
                string tmp = s.substr(pos, i - pos + 1);
                if (isValid(tmp)) {
                    path.push_back(tmp);
                    dfs(s, res, path, i + 1);
                    path.pop_back();
                }
            }
        }
        
        bool isValid(const string &s) {
            // 排除 055 之类的数字
            if (s[0] == '0' && s.size() > 1) {
                return false;
            }
            
            int digit = atoi(s.c_str());
            return 0 <= digit && digit <= 255;
        }
    };

    7 N-Queens

    http://www.lintcode.com/en/problem/n-queens/#

    The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.

    image

    Given an integer n, return all distinct solutions to the n-queens puzzle.

    Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.

    For example,
    There exist two distinct solutions to the 4-queens puzzle:

    [
     [".Q..",  // Solution 1
      "...Q",
      "Q...",
      "..Q."],
    
     ["..Q.",  // Solution 2
      "Q...",
      "...Q",
      ".Q.."]
    ]
    /**
     * 思路:一行一行的取数,例如第一行的皇后放在第1个位置,第二行的皇后放在第3个位置,
     * 以此类推,直到最后一行的皇后放在正确的位置,如此视为一个方案,push到result中
     * 
     * 显然,本题使用dfs,每一行可取的位置从0-N-1,
     * 需要注意的是,每一行在取位置的时候,需要判断有效性(是否可以相互攻击)。
     */
    
    
    
    class Solution {
    public:
        /**
         * Get all distinct N-Queen solutions
         * @param n: The number of queens
         * @return: All distinct solutions
         * For example, A string '...Q' shows a queen on forth position
         */
        vector<vector<string> > solveNQueens(int n) {
            vector<vector<string>> res;
            vector<int> visitedCol;
            
            if (n <= 0) {
                return res;
            }
            
            dfs(n, res, visitedCol);
            return res; 
        }
        
    private:
        void dfs(const int n, vector<vector<string>> &res, vector<int> &visitedCol) {
            // base case
            if (visitedCol.size() == n) {
                res.push_back(draw(visitedCol));
                return;
            }
            
            for (int i = 0; i < n; i++) {
                if (!isValid(visitedCol, i)) {
                    continue;
                }
                
                visitedCol.push_back(i);
                dfs(n, res, visitedCol);
                visitedCol.pop_back();
            }
            
            
        }
        
        bool isValid(const vector<int> &visitedCol, const int currentCol) {
            size_t currentRow = visitedCol.size();
            
            for (int rowIndex = 0; rowIndex < visitedCol.size(); rowIndex++) {
                if (currentCol == visitedCol[rowIndex]) {
                    return false;
                }
                
                if (currentRow + currentCol == rowIndex + visitedCol[rowIndex]) {
                    return false;
                }
                
                if (currentRow - currentCol == rowIndex - visitedCol[rowIndex]) {
                    return false;
                }
            }
            
            return true;
        }
        
        vector<string> draw(const vector<int> &visitedCol) {
            
            vector<string> ret;
            string row;
            for (const auto &elem : visitedCol) {
                row.clear();
                
                for (int i = 0; i < visitedCol.size(); i++) {
                    if (i == elem) {
                        row += "Q";
                    } else {
                        row += ".";
                    }
                }
                
                ret.push_back(row);
            }
            
            return ret;
        }
    };

    8 Sudoku Solver

    https://leetcode.com/problems/sudoku-solver/

    Write a program to solve a Sudoku puzzle by filling the empty cells.

    Empty cells are indicated by the character '.'.

    You may assume that there will be only one unique solution.

    A sudoku puzzle...

    ...and its solution numbers marked in red.

    class Solution {
    public:
        void solveSudoku(vector<vector<char>>& board) {
            dfs (board, 0, 0);
        }
        
    private:
        /**
         * 该题需要对sudoku中每一个以‘.’标记的方格进行dfs,
         * 1. 如果对当前方格的以1-9这9个数字进行遍历,都不合法,那么不会再往下一个方格进行dfs,直接回溯到上一个方格取下一个数。
         * 2. 如果当前方格所取的数合法,那么继续对下一个方格进行dfs,依次下去如果一直合法,那么直到走到sudoku中的最后一个需要放数字的方格,
         *    尝试完它的所有选择,再往上回溯。
         * 然后,在这边我们只需要一个可行解即可,因此只要当前方格合法,往下的dfs返回true,那么即为一个解,直接返回。
         * 
         * 
         * 
         */
        bool dfs(vector<vector<char>> &board, int x, int y) {
    
            for (int i = 0; i < 9; i++) {
                for (int j = 0; j < 9; j++) {
                    //dfs
                    if (board[i][j] == '.') {
                        // k从0-9走完才算走完,但是此处我们只要有一个解,就可以返回了,因此在以下循环中设置了return语句
                        for (int k = 0; k < 9; k++) {
                            bool flag;
                            
                            if (!isValid(board, i ,j, k)) {
                                continue;
                            }
                            
                            board[i][j] = '1' + k;
                            
                            if (j != 8) {
                                flag = dfs(board, i, j + 1);
                            } else {
                                flag = dfs(board, i + 1, 0);
                            }
                            
                            // 当前合法&&下一轮dfs合法,说明找到解
                            if (flag) {
                                return true;
                            }
                            
                            board[i][j] = '.';
                        }
                        
                        // 遍历完9个数,仍然找不到合适的解,则返回false
                        return false;
                    }
                }
            }
            
            // 当所有各自都走完,自然返回true(注意只有当前合法,才会继续往下走,继续往下走的最终结果是越了sudoku的界限)
            return true;
            
        }
        
        bool isValid(const vector<vector<char>> &board, int x, int y, int k) {
            int i, j;
            for (i = 0; i < 9; i++) // 检查 y 列
                if (i != x && board[i][y] == '1' + k)
                    return false;
            
            for (j = 0; j < 9; j++) // 检查 x 行
                if (j != y && board[x][j] == '1' + k)
                     return false;
    
            for (i = 3 * (x / 3); i < 3 * (x / 3 + 1); i++)
                for (j = 3 * (y / 3); j < 3 * (y / 3 + 1); j++)
                    if ((i != x || j != y) && board[i][j] == '1' + k)
                        return false;
    
            return true;
        }
    };
     

    小结1

    做搜索的题目,最关键的是要知道对什么对象进行dfs,例如,在sudoku中是对每一个以“.”标记的方格进行dfs,在回文划分中,是对每一个划分的位置进行dfs,在8妃问题中,是对每一行妃子可以在的位置进行dfs。

    其次,dfs时,我们需要判断所取的每一个解是否是有效的,最好写一个函数来专门做这件事情。只要当当前对象dfs的数值有效时,才会继续往对下一个对象进行dfs,否则就直接向上回溯了(这点可以参见sudoku中的解释)。

    最后,对于每次dfs时,可以对范围进行分支限界。例如回文划分、subset等。

    小结2

    值得注意的是:到底要对多少对象进行dfs,有时候是很明显的,例如8妃和sudoku问题,8妃就是对8行依次dfs,sudoku就是对所有方格进行dfs。但有时,总共要对多少对象进行dfs并不明显。dfs的递归基要处理的就是dfs完多少个对象就一定要返回(不然就无限dfs下去了)。当然,在sudoku问题中,方格的循环走完返回,这是一个隐含的递归基。

    总结:dfs函数中,递归基处理的是dfs多少个对象就要返回。而每次dfs的for循环,往往是每一次dfs的范围。当递归栈最顶层的那个dfs循环走完,搜素就完成了。

    小结3

    在图论中,往往是从某一个点开始往下dfs,dfs的范围是当前node的所有neighbor,与我们通常的搜索问题不同的是,图论中的dfs在回溯时不会剪枝,总之,找到一条路径就结束了。

     

     

  • 相关阅读:
    Spring Web Flow 简介
    LeetCode:按序打印【1114】
    Java基础教程:多线程基础(5)——倒计时器(CountDownLatch)
    React:快速上手(8)——前后端分离的跨域访问与会话保持
    SpringBoot学习笔记:自定义拦截器
    Java进阶教程:垃圾回收
    SpringMVC:学习笔记(12)——ThreadLocal实现会话共享
    Node.js学习笔记(4):Yarn简明教程
    Docker:学习笔记(1)——核心概念及Ubuntu安装
    Java基础教程:内部类
  • 原文地址:https://www.cnblogs.com/jianxinzhou/p/4712148.html
Copyright © 2011-2022 走看看