zoukankan      html  css  js  c++  java
  • machine learning学习笔记

    看到Max Welling教授主页上有不少学习notes,收藏一下吧,其最近出版了一本书呢还,还没看过。

    http://www.ics.uci.edu/~welling/classnotes/classnotes.html

    Statistical Estimation [ps]
    - bayesian estimation
    - maximum a posteriori (MAP) estimation
    - maximum likelihood (ML) estimation
    - Bias/Variance tradeoff & minimum description length (MDL)

    Expectation Maximization (EM) Algorithm [ps]
    -
     detailed derivation plus some examples

    Supervised Learning (Function Approximation) [ps]
    - mixture of experts (MoE)
    - cluster weighted modeling (CWM)

    Clustering [ps]
    - mixture of gaussians (MoG)
    - vector quantization (VQ) with k-means.

    Linear Models [ps]
    - factor analysis (FA)
    - probabilistic principal component analysis (PPCA)
    - principal component analysis (PCA)

    Independent Component Analysis (ICA) [ps]
    - noiseless ICA
    - noisy ICA
    - variational ICA

    Mixture of Factor Analysers (MoFA) [ps]
    - derivation of learning algorithm

    Hidden Markov Models (HMM) [ps]
    - viterbi decoding algorithm
    - Baum-Welch learning algorithm

    Kalman Filters (KF) [ps]
    - kalman filter algorithm (very detailed derivation)
    - kalman smoother algorithm (very detailed derivation)

    Approximate Inference Algorithms [ps]
    - variational EM
    - laplace approximation
    - importance sampling
    - rejection sampling
    - markov chain monte carlo (MCMC) sampling
    - gibbs sampling
    - hybrid monte carlo sampling (HMC)

    Belief Propagation (BP) [ps]
    - Introduction to BP and GBP: powerpoint presentation [ppt]
    - converting directed acyclic graphical models (DAG) into junction trees (JT)
    - Shafer-Shenoy belief propagation on junction trees
    - some examples

    Boltzmann Machine (BM) [ps]
    - derivation of learning algorithm

    Generative Topographic Mapping (GTM) [ps]
    - derivation of learning algorithm

    Introduction to Kernel Methods: powerpoint presentation [ppt]

    Kernel Principal Components Analysis [pdf]

    Kernel Canonical Correlation Analysis [pdf]

    Kernel Support Vector Machines [pdf]

    Kernel Ridge-Regression [pdf]

    Kernel Support Vector Regression [pdf]

    Convex Optimization [pdf]
    A brief introduction based on Stephan Boyd’s book, chapter 5.

    Fisher Linear Discriminant Analysis [pdf]

    转载请注明出处,谢谢。
  • 相关阅读:
    HDU 1813 Escape from Tetris
    BZOJ 2276 Temperature
    BZOJ 4499 线性函数
    BZOJ 3131 淘金
    HDU 5738 Eureka
    POJ 2409 Let it Bead
    POJ 1286 Necklace of Beads
    POJ 1696 Space Ant
    Fox And Jumping
    Recover the String
  • 原文地址:https://www.cnblogs.com/jianyingzhou/p/4217683.html
Copyright © 2011-2022 走看看