zoukankan      html  css  js  c++  java
  • JAVA线程池

    一.线程池的简介与实现类

    1.什么是线程池

      字面意思可以抽象为所有水装在一个池子中,线程池就是所有线程集合在一个栈空间所开辟出来的一个空间就是线程池,我们可以把要执行的多线程交给线程池来处理,和连接池的概念一样,通过维护一定数量的线程池来达到多个线程的复用我可以这么理解。

    2.线程池的好处

      每个线程都要通过new Thread(xxRunnable).start()的方式来创建并运行一个线程亦或者继承Runnable()接口实现run()来实现线程的使用,当启用过多的线程会造成线程并发或者出现阻塞,这是有的可以使用MQ消息队列亦或者JVM底层优化进行full.gc()亦或者进行STW进行线程优化,线程池就是属于一种方法线程少的话这不会是问题,而真实环境可能会开启多个线程让系统和程序达到最佳效率,当线程数达到一定数量就会耗尽系统的CPU和内存资源,也会造成GC频繁收集和停顿,因为每次创建和销毁一个线程都是要消耗系统资源的,如果为每个任务都创建线程这无疑是一个很大的性能瓶颈。所以,线程池中的线程复用极大节省了系统资源,当线程一段时间不再有任务处理时它也会自动销毁,而不会长驻内存。

    3.线程池的类

       

    • corePoolSize:线程池的核心大小,也可以理解为最小的线程池大小。
    • maximumPoolSize:最大线程池大小。
    • keepAliveTime:空余线程存活时间,指的是超过corePoolSize的空余线程达到多长时间才进行销毁。
    • unit:销毁时间单位。
    • workQueue:存储等待执行线程的工作队列。
    • threadFactory:创建线程的工厂,一般用默认即可。
    • handler:拒绝策略,当工作队列、线程池全已满时如何拒绝新任务,默认抛出异常。

     4.线程池的流程

    1、判断核心线程池是否已满,没满则创建一个新的工作线程来执行任务。已满则。
    2、判断任务队列是否已满,没满则将新提交的任务添加在工作队列,已满则。
    3、判断整个线程池是否已满,没满则创建一个新的工作线程来执行任务,已满则执行饱和策略。

    (1、判断线程池中当前线程数是否大于核心线程数,如果小于,在创建一个新的线程来执行任务,如果大于则
    2、判断任务队列是否已满,没满则将新提交的任务添加在工作队列,已满则。
    3、判断线程池中当前线程数是否大于最大线程数,如果小于,则创建一个新的线程来执行任务,如果大于,则执行饱和策略。)

    5.Java中提供的线程池

    Executors类提供了4种不同的线程池:newCachedThreadPool, newFixedThreadPool, newScheduledThreadPool, newSingleThreadExecutor。且这四种实现功能各有不同

    1、newCachedThreadPool:用来创建一个可以无限扩大的线程池,适用于负载较轻的场景,执行短期异步任务。(可以使得任务快速得到执行,因为任务时间执行短,可以很快结束,也不会造成cpu过度切换)

    2、newFixedThreadPool:创建一个固定大小的线程池,因为采用无界的阻塞队列,所以实际线程数量永远不会变化,适用于负载较重的场景,对当前线程数量进行限制。(保证线程数可控,不会造成线程过多,导致系统负载更为严重)

    3、newSingleThreadExecutor:创建一个单线程的线程池,适用于需要保证顺序执行各个任务。

    4、newScheduledThreadPool:适用于执行延时或者周期性任务。

    6.execut()和submit()方法

    1、execute(),执行一个任务,没有返回值。
    2、submit(),提交一个线程任务,有返回值。
    submit(Callable<T> task)能获取到它的返回值,通过future.get()获取(阻塞直到任务执行完)。一般使用FutureTask+Callable配合使用(IntentService中有体现)。

    submit(Runnable task, T result)能通过传入的载体result间接获得线程的返回值。
    submit(Runnable task)则是没有返回值的,就算获取它的返回值也是null。

    Future.get方法会使取结果的线程进入阻塞状态,知道线程执行完成之后,唤醒取结果的线程,然后返回结果。

    二.实现原理与简介

    1.线程池状态

      在ThreadPoolExecutor中定义了一个volatile变量,另外定义了几个static final变量表示线程池的各个状态:

      

       volatile int runState;
     static final int RUNNING    = 0;
     static final int SHUTDOWN   = 1;
     static final int STOP       = 2;
     static final int TERMINATED = 3;
    

      

     unState表示当前线程池的状态,它是一个volatile变量用来保证线程之间的可见性;

     下面的几个static final变量表示runState可能的几个取值。

     当创建线程池后,初始时,线程池处于RUNNING状态;

     如果调用了shutdown()方法,则线程池处于SHUTDOWN状态,此时线程池不能够接受新的任务,它会等待所有任务执行完毕;

     如果调用了shutdownNow()方法,则线程池处于STOP状态,此时线程池不能接受新的任务,并且会去尝试终止正在执行的任务;

     当线程池处于SHUTDOWN或STOP状态,并且所有工作线程已经销毁,任务缓存队列已经清空或执行结束后,线程池被设置为TERMINATED状态。

    2.执行操作

    ThreadPoolExecutor类中其他的一些比较重要成员变量:

      private final BlockingQueue<Runnable> workQueue;              //任务缓存队列,用来存放等待执行的任务
       private final ReentrantLock mainLock = new ReentrantLock();   //线程池的主要状态锁,对线程池状态(比如线程池大小、runState等)的改变都要使用这个锁
      private final HashSet<Worker> workers = new HashSet<Worker>();  //用来存放工作集
       private volatile long  keepAliveTime;    //线程存货时间 
      private volatile boolean allowCoreThreadTimeOut;   //是否允许为核心线程设置存活时间
      private volatile int   corePoolSize;     //核心池的大小(即线程池中的线程数目大于这个参数时,提交的任务会被放进任务缓存队列)
      private volatile int   maximumPoolSize;   //线程池最大能容忍的线程数
     private volatile int   poolSize;       //线程池中当前的线程数
     private volatile RejectedExecutionHandler handler; //任务拒绝策略
     private volatile ThreadFactory threadFactory;   //线程工厂,用来创建线程
     private int largestPoolSize;   //用来记录线程池中曾经出现过的最大线程数
    · private long completedTaskCount;   //用来记录已经执行完毕的任务个数
    

     execut()或submit()方法实现方法操作

    public void execute(Runnable command) {
        if (command == null)//首先,判断提交的任务command是否为null,若是null,则抛出空指针异常
            throw new NullPointerException();
        if (poolSize >= corePoolSize || !addIfUnderCorePoolSize(command)) {
            if (runState == RUNNING && workQueue.offer(command)) {
                if (runState != RUNNING || poolSize == 0)
                    ensureQueuedTaskHandled(command);
            }
            else if (!addIfUnderMaximumPoolSize(command))
                reject(command); // is shutdown or saturated
        }
    }
    

      代码实现操作:

      

    if (poolSize >= corePoolSize || !addIfUnderCorePoolSize(command))

    如果线程池中当前线程数不小于核心池大小,那么就会直接进入下面的if语句块了。如果线程池中当前线程数小于核心池大小则执行addIfUnderCorePoolSize(command)如果执行完返回false责第一层判断完成然后执行第二层

    if (runState == RUNNING && workQueue.offer(command))

    如果当前线程池处于RUNNING状态,则将任务放入任务缓存队列;如果当前线程池不处于RUNNING状态或者任务放入缓存队列失败,则执行:

    addIfUnderMaximumPoolSize(command)

    如果执行addIfUnderMaximumPoolSize方法失败,则执行reject()方法进行任务拒绝处理。

    if (runState == RUNNING && workQueue.offer(command))

    这句的执行,如果说当前线程池处于RUNNING状态且将任务放入任务缓存队列成功,则继续进行判断

    if (runState != RUNNING || poolSize == 0)

    这句判断是为了防止在将此任务添加进任务缓存队列的同时其他线程突然调用shutdown或者shutdownNow方法关闭了线程池的一种应急措施。如果是这样就执行:

    ensureQueuedTaskHandled(command) 进行应急处理添加到任务缓存队列中的任务得到处理。

    addIfUnderCorePoolSize和addIfUnderMaximumPoolSize()方法:

    private boolean addIfUnderCorePoolSize(Runnable firstTask) {
        Thread t = null;
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            if (poolSize < corePoolSize && runState == RUNNING)
                t = addThread(firstTask);        //创建线程去执行firstTask任务   
            } finally {
            mainLock.unlock();
        }
        if (t == null)
            return false;
        t.start();
        return true;
    }
    

      首先获取到锁,因为这地方涉及到线程池状态的变化,先通过if语句判断当前线程池中的线程数目是否小于核心池大小,有朋友也许会有疑问:前面在execute()方法中不是已经判断过了吗,只有线程池当前线程数目小于核心池大小才会执行addIfUnderCorePoolSize方法的,为何这地方还要继续判断?原因很简单,前面的判断过程中并没有加锁,因此可能在execute方法判断的时候poolSize小于corePoolSize,而判断完之后,在其他线程中又向线程池提交了任务,就可能导致poolSize不小于corePoolSize了,所以需要在这个地方继续判断。然后接着判断线程池的状态是否为RUNNING,原因也很简单,因为有可能在其他线程中调用了shutdown或者shutdownNow方法。然后就是执行

      t = addThread(firstTask);

    该方法传的参数为提交的任务,返回值为Thread类型。然后接着在下面判断t是否为空,为空则表明创建线程失败(即poolSize>=corePoolSize或者runState不等于RUNNING),否则调用t.start()方法启动线程

    addThread()方法:

    private Thread addThread(Runnable firstTask) {
        Worker w = new Worker(firstTask);
        Thread t = threadFactory.newThread(w);  //创建一个线程,执行任务   
        if (t != null) {
            w.thread = t;            //将创建的线程的引用赋值为w的成员变量       
            workers.add(w);
            int nt = ++poolSize;     //当前线程数加1       
            if (nt > largestPoolSize)
                largestPoolSize = nt;
        }
        return t;
    }
    

      用提交的任务创建了一个Worker对象,然后调用线程工厂threadFactory创建了一个新的线程t,然后将线程t的引用赋值给了Worker对象的成员变量thread,接着通过workers.add(w)将Worker对象添加到工作集当中

    Worker实现类:

    private final class Worker implements Runnable {
        private final ReentrantLock runLock = new ReentrantLock();
        private Runnable firstTask;
        volatile long completedTasks;
        Thread thread;
        Worker(Runnable firstTask) {
            this.firstTask = firstTask;
        }
        boolean isActive() {
            return runLock.isLocked();
        }
        void interruptIfIdle() {
            final ReentrantLock runLock = this.runLock;
            if (runLock.tryLock()) {
                try {
            if (thread != Thread.currentThread())
            thread.interrupt();
                } finally {
                    runLock.unlock();
                }
            }
        }
        void interruptNow() {
            thread.interrupt();
        }
     
        private void runTask(Runnable task) {
            final ReentrantLock runLock = this.runLock;
            runLock.lock();
            try {
                if (runState < STOP &&
                    Thread.interrupted() &&
                    runState >= STOP)
                boolean ran = false;
                beforeExecute(thread, task);   //beforeExecute方法是ThreadPoolExecutor类的一个方法,没有具体实现,用户可以根据
                //自己需要重载这个方法和后面的afterExecute方法来进行一些统计信息,比如某个任务的执行时间等           
                try {
                    task.run();
                    ran = true;
                    afterExecute(task, null);
                    ++completedTasks;
                } catch (RuntimeException ex) {
                    if (!ran)
                        afterExecute(task, ex);
                    throw ex;
                }
            } finally {
                runLock.unlock();
            }
        }
     
        public void run() {
            try {
                Runnable task = firstTask;
                firstTask = null;
                while (task != null || (task = getTask()) != null) {
                    runTask(task);
                    task = null;
                }
            } finally {
                workerDone(this);   //当任务队列中没有任务时,进行清理工作       
            }
        }
    }
    

      workes继承了Runble所以Thread t = threadFactory.newThread(w)跟Thread t = new Thread(w);效果等同

    Worker实现了Runnable接口并实现run()方法

    public void run() {
        try {
            Runnable task = firstTask;
            firstTask = null;
            while (task != null || (task = getTask()) != null) {
                runTask(task);
                task = null;
            }
        } finally {
            workerDone(this);
        }
    

      首先执行的是通过构造器传进来的任务firstTask,在调用runTask()执行完firstTask之后,在while循环里面不断通过getTask()去取新的任务来执行,那么去哪里取呢?自然是从任务缓存队列里面去取,getTask是ThreadPoolExecutor类中的方法,并不是Worker类中的方法,下面是getTask方法的实现:

    Runnable getTask() {
        for (;;) {
            try {
                int state = runState;
                if (state > SHUTDOWN)
                    return null;
                Runnable r;
                if (state == SHUTDOWN)  // Help drain queue
                    r = workQueue.poll();
                else if (poolSize > corePoolSize || allowCoreThreadTimeOut) //如果线程数大于核心池大小或者允许为核心池线程设置空闲时间,
                    //则通过poll取任务,若等待一定的时间取不到任务,则返回null
                    r = workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS);
                else
                    r = workQueue.take();
                if (r != null)
                    return r;
                if (workerCanExit()) {    //如果没取到任务,即r为null,则判断当前的worker是否可以退出
                    if (runState >= SHUTDOWN) // Wake up others
                        interruptIdleWorkers();   //中断处于空闲状态的worker
                    return null;
                }
                // Else retry
            } catch (InterruptedException ie) {
                // On interruption, re-check runState
            }
        }
    }
    

     在getTask中,先判断当前线程池状态,如果runState大于SHUTDOWN(即为STOP或者TERMINATED),则直接返回null。

     如果runState为SHUTDOWN或者RUNNING,则从任务缓存队列取任务。

     如果当前线程池的线程数大于核心池大小corePoolSize或者允许为核心池中的线程设置空闲存活时间,则调用poll(time,timeUnit)来取任务,这个方法会等待一定的时间,如果取不到任务就返回null。

     然后判断取到的任务r是否为null,为null则通过调用workerCanExit()方法来判断当前worker是否可以退出,我们看一下workerCanExit()的实现: 

    private boolean workerCanExit() {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        boolean canExit;
        //如果runState大于等于STOP,或者任务缓存队列为空了
        //或者  允许为核心池线程设置空闲存活时间并且线程池中的线程数目大于1
        try {
            canExit = runState >= STOP ||
                workQueue.isEmpty() ||
                (allowCoreThreadTimeOut &&
                 poolSize > Math.max(1, corePoolSize));
        } finally {
            mainLock.unlock();
        }
        return canExit;
    }
    

      如果线程池处于STOP状态、或者任务队列已为空或者允许为核心池线程设置空闲存活时间并且线程数大于1时,允许worker退出。如果允许worker退出,则调用interruptIdleWorkers()中断处于空闲状态的worker,我们看一下interruptIdleWorkers()的实现

    void interruptIdleWorkers() {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            for (Worker w : workers)  //实际上调用的是worker的interruptIfIdle()方法
                w.interruptIfIdle();
        } finally {
            mainLock.unlock();
        }
    }
    

      interruptIfIdle()方法:

    void interruptIfIdle() {
        final ReentrantLock runLock = this.runLock;
        if (runLock.tryLock()) {    //注意这里,是调用tryLock()来获取锁的,因为如果当前worker正在执行任务,锁已经被获取了,是无法获取到锁的
                                    //如果成功获取了锁,说明当前worker处于空闲状态
            try {
        if (thread != Thread.currentThread())  
        thread.interrupt();
            } finally {
                runLock.unlock();
            }
        }
    }
    

     addIfUnderMaximumPoolSize方法的实现和addIfUnderCorePoolSize方法的实现思想非常相似,只不过前一个方法是在线程池中的线程数达到了核心池大小并且往任务队列中添加任务失败的情况下执行的:

    private boolean addIfUnderMaximumPoolSize(Runnable firstTask) {
        Thread t = null;
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            if (poolSize < maximumPoolSize && runState == RUNNING)
                t = addThread(firstTask);
        } finally {
            mainLock.unlock();
        }
        if (t == null)
            return false;
        t.start();
        return true;
    }
    

      只是if语句判断条件中的poolSize < maximumPoolSize不同而已

    • 如果当前线程池中的线程数目小于corePoolSize,则每来一个任务,就会创建一个线程去执行这个任务;
    • 如果当前线程池中的线程数目>=corePoolSize,则每来一个任务,会尝试将其添加到任务缓存队列当中,若添加成功,则该任务会等待空闲线程将其取出去执行;若添加失败(一般来说是任务缓存队列已满),则会尝试创建新的线程去执行这个任务;
    • 如果当前线程池中的线程数目达到maximumPoolSize,则会采取任务拒绝策略进行处理;
    • 如果线程池中的线程数量大于 corePoolSize时,如果某线程空闲时间超过keepAliveTime,线程将被终止,直至线程池中的线程数目不大于corePoolSize;如果允许为核心池中的线程设置存活时间,那么核心池中的线程空闲时间超过keepAliveTime,线程也会被终止。

    3.线程池初始化

    • prestartCoreThread():初始化一个核心线程;
    • prestartAllCoreThreads():初始化所有核心线程
    public boolean prestartCoreThread() {
        return addIfUnderCorePoolSize(null); //注意传进去的参数是null
    }
     
    public int prestartAllCoreThreads() {
        int n = 0;
        while (addIfUnderCorePoolSize(null))//注意传进去的参数是null
            ++n;
        return n;
    }
    

      如果传进去的参数为null,则最后执行线程会阻塞在getTask方法中的r = workQueue.take();且有任务在等待中

    4.任务缓存队列及排队策略

     workQueue的类型为BlockingQueue<Runnable>,通常可以取下面三种类型:

      1)ArrayBlockingQueue:基于数组的先进先出队列,此队列创建时必须指定大小;

      2)LinkedBlockingQueue:基于链表的先进先出队列,如果创建时没有指定此队列大小,则默认为Integer.MAX_VALUE;

      3)synchronousQueue:这个队列比较特殊,它不会保存提交的任务,而是将直接新建一个线程来执行新来的任务。

    5.任务拒绝策略

    线程池的任务缓存队列已满并且线程池中的线程数目达到maximumPoolSize可以实现下面四种形式

    ThreadPoolExecutor.AbortPolicy:丢弃任务并抛出RejectedExecutionException异常。
    ThreadPoolExecutor.DiscardPolicy:也是丢弃任务,但是不抛出异常。
    ThreadPoolExecutor.DiscardOldestPolicy:丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程)
    ThreadPoolExecutor.CallerRunsPolicy:由调用线程处理该任务 

    6.线程池的关闭

    • shutdown():不会立即终止线程池,而是要等所有任务缓存队列中的任务都执行完后才终止,但再也不会接受新的任务
    • shutdownNow():立即终止线程池,并尝试打断正在执行的任务,并且清空任务缓存队列,返回尚未执行的任务

    7.线程池容量的动态调整

    • setCorePoolSize:设置核心池大小
    • setMaximumPoolSize:设置线程池最大能创建的线程数目大小

    8.实现方法

    public class Test {
         public static void main(String[] args) {   
             ThreadPoolExecutor executor = new ThreadPoolExecutor(5, 10, 200, TimeUnit.MILLISECONDS,
                     new ArrayBlockingQueue<Runnable>(5));
              
             for(int i=0;i<15;i++){
                 MyTask myTask = new MyTask(i);
                 executor.execute(myTask);
                 System.out.println("线程池中线程数目:"+executor.getPoolSize()+",队列等待执行的任务数目:"+
                 executor.getQueue().size()+",已执行完的任务数目:"+executor.getCompletedTaskCount());
             }
             executor.shutdown();
         }
    }
     
     
    class MyTask implements Runnable {
        private int taskNum;
         
        public MyTask(int num) {
            this.taskNum = num;
        }
         
        @Override
        public void run() {
            System.out.println("正在执行task "+taskNum);
            try {
                Thread.currentThread().sleep(4000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("task "+taskNum+"执行完成");
        }
    }
    

      Java中建议使用Executors类中提供的几个静态方法来创建线程池

    Executors.newCachedThreadPool();        //创建一个缓冲池,缓冲池容量大小为Integer.MAX_VALUE
    Executors.newSingleThreadExecutor();   //创建容量为1的缓冲池
    Executors.newFixedThreadPool(int);    //创建固定容量大小的缓冲池

    /**
    *静态实现方法
    **/
    public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());
    }
    public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(11,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>()));
    }
    public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>());
    }

      newFixedThreadPool创建的线程池corePoolSize和maximumPoolSize值是相等的,它使用的LinkedBlockingQueue;

      newSingleThreadExecutor将corePoolSize和maximumPoolSize都设置为1,也使用的LinkedBlockingQueue;

      newCachedThreadPool将corePoolSize设置为0,将maximumPoolSize设置为Integer.MAX_VALUE,使用的SynchronousQueue,也就是说来了任务就创建线程运行,当线程空闲超过60秒,就销毁线程。

    著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

  • 相关阅读:
    ajax请求默认都是异步请求,怎么变为同步请求
    TP6跨域问题
    localStorage使用总结
    win10 windows management instrumentation cpu占用高解决方法
    限制性股票-股份支付
    可转债会计分类
    其他权益工具投资的交易费用计入成本
    年数总和法
    外币货币性项目汇兑差额应当计入当期损益
    chrome怎么设置点击窗口在新窗口打开
  • 原文地址:https://www.cnblogs.com/jiaoyixin/p/13721513.html
Copyright © 2011-2022 走看看