zoukankan      html  css  js  c++  java
  • numpy中的random函数

    1:rand

        rand(d0, d1, ..., dn)
        Random values in a given shape.
        Create an array of the given shape and populate it with
        random samples from a uniform distribution

        over ``[0, 1)``.


        数字区间:[0,1)

        分布:均匀分布

        形状:[d0,d1,...,dn]

    from numpy import random
    print(random.rand(3,4))
    '''result
    [[0.77647254 0.87714719 0.55351719 0.31369393]
     [0.38578822 0.30977858 0.31366171 0.26879944]
     [0.22720179 0.26118622 0.08420711 0.70508725]]
    '''

    2:randint

        randint(low, high=None, size=None, dtype='l')
        Return random integers from `low` (inclusive) to `high` (exclusive).
        Return random integers from the "discrete uniform" distribution of
        the specified dtype in the "half-open" interval [`low`, `high`). If

        `high` is None (the default), then results are from [0, `low`).


        数字区间:[low,high)

        分布:离散均匀分布

        形状:size

    from numpy import random
    print(random.randint(1,10, size=(2,3)))
    '''result
    [[3 1 6]
     [9 1 7]]
     '''

    3:randn

        randn(d0, d1, ..., dn)
        Return a sample (or samples) from the "standard normal" distribution.
        If positive, int_like or int-convertible arguments are provided,
        `randn` generates an array of shape ``(d0, d1, ..., dn)``, filled
        with random floats sampled from a univariate "normal" (Gaussian)
        distribution of mean 0 and variance 1 (if any of the :math:`d_i` are
        floats, they are first converted to integers by truncation). A single
        float randomly sampled from the distribution is returned if no
        argument is provided.
        This is a convenience function.  If you want an interface that takes a
        tuple as the first argument, use `numpy.random.standard_normal` instead.


        数字区间:(负无穷,正无穷)

        分布:标准正态分布

        形状:[d0,d1,...,dn]

    from numpy import random
    print(random.randn(3,2))
    '''result
    [[ 0.0456255   0.64865066]
     [-0.40588788  0.0428462 ]
     [ 0.46260185 -0.05147188]]
    '''

    4: ranf = random = sample = random_sample

    random_sample(size=None)

    Return random floats in the half-open interval [0.0, 1.0).

    Results are from the "continuous uniform" distribution over the
    stated interval.  To sample :math:`Unif[a, b), b > a` multiply
    the output of `random_sample` by `(b-a)` and add `a`::

      (b - a) * random_sample() + a


        数字区间:[0,1)

        分布:连续均匀分布

        形状:size

        注意:ranf、random、sample、random_sample 都是使用的random_sample方法

                 要想得到a到b之间的随机数,使用  (b - a) * random_sample() + a

    from numpy import random
    print(random.random())    #result 0.7679449887445754
    print(random.random(size=(2,2)))
    '''result
    [[0.05636011 0.46029369]
     [0.26693099 0.34289541]]
    '''

    5:normal

    normal(loc=0.0, scale=1.0, size=None)

    Draw random samples from a normal (Gaussian) distribution.

    The probability density function of the normal distribution, first
    derived by De Moivre and 200 years later by both Gauss and Laplace
    independently [2]_, is often called the bell curve because of
    its characteristic shape (see the example below).

    The normal distributions occurs often in nature. For example, it
    describes the commonly occurring distribution of samples influenced
    by a large number of tiny, random disturbances, each with its own
    unique distribution [2]_.


        数字区间:(负无穷,正无穷)

        分布:均值为loc,标准差为scale的正态分布

        形状:size

    from numpy import random
    print(random.normal(0.0, 0.01, [2, 3]))
    '''result
    [[-0.01117429  0.00404763  0.01438945]
     [ 0.00550622 -0.01674051 -0.00411558]]
    '''
  • 相关阅读:
    Python/WSGI 应用快速入门--转
    汇编题目:数字转字符,并在窗口上显示出来
    汇编题目:在窗口上显示Welcome to masm!
    VBA中的函数Timer用法
    用VBA计算两个日期之间的工作日(去掉周末两天)
    VBA记录当前系统时间并精确到毫秒
    上海房产税免征--积分或居住证
    学习汇编语言
    “Hello World”—— 第一个汇编程序
    汇编程序设计上机步骤
  • 原文地址:https://www.cnblogs.com/jiaxin359/p/9088767.html
Copyright © 2011-2022 走看看