这里涉及到的高级别API主要是使用Estimator类来编写机器学习的程序,此外你还需要用到一些数据导入的知识。
为什么使用Estimator
Estimator类是定义在tf.estimator.Estimator中的,你可以使用其中已经有的Estimator,叫做预创建的Estimator,也可以自定义Estimator。Estimator已经封装了训练(train),评估(evaluate),预测(predict),导出以供使用等方法。
此外,Estimator会为我们提供诸如图构建、创建session等管道工作,不用我们再做这些重复的工作。它还提供了安全的分布式训练循环。相比于低级的API,我们可以把大部分的时间和精力放在处理数据、训练模型、调整参数上面,而不是创建张量、构建图、使用session运行张量上面。
使用Estimator的步骤
1:需要编写一个数据输入的函数input_fn
input_fn是输入函数,这个函数的作用在于对数据进行预处理,并且在模型train,predict,evaluate的时候给模型送进去数据。所以input_fn主要作用的时机在模型训练、预测和评估的时候,在模型定义的时候不需要传入输入函数,而是传入一个预定义的特征列。可以使用系统自带的函数,可以编写自定义的输入函数。
使用系统自带的数据输入函数:
系统自带的输入函数为tf.estimator.inputs.numpy_input_fn,它的输入参数如下:
def numpy_input_fn(x, y=None, batch_size=128, num_epochs=1, shuffle=None, queue_capacity=1000, num_threads=1)
x为numpy数组或者numpy数组的字典,当为numpy数组的时候,这个数组被当做单一的特征对待。
一个例子如下,这个例子是tf.estimator Quickstart tutorial中的一段代码:
import numpy as np training_set = tf.contrib.learn.datasets.base.load_csv_with_header( filename=IRIS_TRAINING, target_dtype=np.int, features_dtype=np.float32) train_input_fn = tf.estimator.inputs.numpy_input_fn( x={"x": np.array(training_set.data)}, y=np.array(training_set.target), num_epochs=None, shuffle=True) classifier.train(input_fn=train_input_fn, steps=2000)
自定义导入数据的函数:
要自定义导入函数,要知道tensorflow中关于数据的概念,以及知道自定义的函数应该返回的值,下面我将梳理一下这里面的概念:
自定义函数的基本框架以及返回值
def my_input_fn(): # 在这里进行数据的预处理... # ...返回两个值 1) 一个由特征列和包含特征的Tensors组成的映射(字典) 2) 一个包含labels的Tensor return feature_cols, labels
自定义函数需要返回两个值,一个值是feature_cols,是一个字典,其中字典的key为特征的列名称,字典的value为包含特征值的Tensor对象。labels是一个包含标签值的Tensor对象。
tf.data.API对于数据的两个抽象:
使用tf.data.API来构建数据输入的管道,帮助我们导入数据,无论是图像,文本还是分布式的数据,都可以用它来完成。
一个抽象的概念是tf.data.Dataset,一个Dataset是一个数据集,它是由一系列的元素组成的,每个元素的类型都是相同的。其中每个元素包含一个或者多个Tensor对象。我们可以以两种方式来创建Dataset对象,一种方式是创建它的来源,比如使用Dataset.from_tensor_slices(),可以使用张量来创建Dataset对象,另外一种方式是运用转换的方式,可以将一个Dataset来变成另外一个Dataset,比如Dataset.batch()。
另外一个抽象的概念是tf.data.Iterator,它代表的是迭代器。表示的是如何从数据集里面取出元素,最简答的迭代器是单次迭代器,Dataset.make_one_shot_iterator()可以创建单次迭代器。创建迭代器以后,可以使用Iterator.get_next()来获取下一个元素。
其它的创建数据集的方法:
Dataset.from_tensor()创建一个Dataset,并将传入的Tensor当做一个元素。 Dataset.from_tensor_slices()会创建一个Dataset,并且将传入的Tensor在第0维上面切面,分成一些列的元素。还可以使用TFRecordDataset来获得磁盘上面TFRecord格式的数据。
其它的创建迭代器的方法:
除了dataset.make_one_shot_iterator()这种单次迭代器以外,你还可以创建可初始化、可重新初始化、可馈送迭代器。
导入数据集的基本的工作机制:
1:创建Dataset对象 –> 2:将Dataset进行转化 –> 3:创建迭代器 –> 4:用迭代器返回下一个元素。
下面用一个例子来说明一下:
from tensorflow.python.data import Dataset import numpy as np def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None): """自定义的输入函数 Args: features: 使用pandas中的DataFrame对象来表示的features targets: 使用pandas的taFrame对象表示的targets batch_size: 批次的大小 shuffle: 是否将数据进行重新打乱 num_epochs: 需要重复的epochs的数量,一个epochs代表一个训练周期. None = repeat indefinitely Returns: 下一批次数据的元组 (features, labels) """ # 将pandas对象转换为字典,其中字典的值为numpy的数组 features = {key:np.array(value) for key,value in dict(features).items()} # 创建一个Dataset,并且设置好批次和重复的次数 ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit ds = ds.batch(batch_size).repeat(num_epochs) # 是否进行数据扰动 if shuffle: ds = ds.shuffle(10000) # 返回下个批次的数据 features, labels = ds.make_one_shot_iterator().get_next() return features, labels
上面自定义了数据导入的函数,使用Dataset.from_tensor_slices()来创建Dataset。然后使用batch、repeat、shuffle进行转换。 接着创建迭代器,并且获得下一个元素。
2:定义特征列
使用tf.feature_column来标识特征名称、类型和任何输入预处理。
特征列在原始数据和模型之间起到了连接的作用。在编写模型的时候需要预先确定输入数据的特征列。
比如包含经度和维度两个特征的特征列,它们都是数值类型,这个特征列在模型定义的时候需要传入:
import tensorflow as tf longitude = tf.feature_column.numeric_column('longitude') latitude = tf.feature_column.numeric_column('latitude') feature_column = [longitude, latitude]
特征列在原始数据与模型所需的数据之间架起了桥梁。
3:实例化相关的预创建的Estimator
这个步骤就简单了,以深度学习模型为例,运用上面创建的经纬度特征列,使用10*10的隐层创建一个深度神经网络的回归模型:
hidden_units = [10, 10] dnn_regressor = tf.estimator.DNNRegressor( feature_columns=feature_columns, hidden_units=hidden_units, )
4:调用训练、评估或推理方法
使用上述创建的模型进行train、evaluate、predict操作。首先需要定理训练的输入函数,将训练集的特征和标签都传进去,然后开始训练,例子如下:
training_input_fn = lambda:my_input_fn(train_df, train_target_df) dnn_regressor.train( input_fn=training_input_fn, steps=300 )
参考:
Estimator 高级的API,介绍了创建estimator的流程
导入数据 介绍了数据集,还有迭代器的知识
Building Input Functions with tf.estimator 讲解了如何定义输入函数
特征列 详细介绍了特征列,里面有9中特征列可以学习
google机器学习速成课程的神经网络简介 ,完整的机器学习过程