树上DP题。
其实有点类似于01的问题。方程很容易想到。首先,因为一条链的节点其实都是在树上的,所以很容易想到应该先求一个LCA。然后,当某节点不是链的LCA时,它的转移就是:
dp[i]=sum[i],其中,sum[i]是i的子节点的dp[i]的和。
如果它是某个点的LCA时,那么它的转移就是dp[i]=val[p]+(sum(sum[k])-sum(dp[k except i])),k是一条chain上的节点。
然而,这样做是不会过的,TLE。。。
树状数组维和chain上的节点的和。QAQ.....
怎么样维护呢?首先,使用DFS把树处理成DFS序,并维护时间戳,这是很显然的,记为l[u],r[u]。然后,假设对于某条链的LCA为u,计算出sum[u]和dp[u]后,对l[u]~r[u]进行区间更新。为什么要区间更新呢?因为,如果以后存在一条chain的起点是在u的子树内,那么,我们在计算链上节点和时,该链必定是经过u点的,这样,求前缀和就可以得到一个和是包含了u点的。区间更新,单点查询。单点查询就是完成了从起或终点到它们的LCA的链上节点求和,因为每次区间更新的时候,因为起点都在子树内,就可以对链上的节点的和不停地累加。
我弱菜没想到优化,TLE的代码。。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
const int MAX=100010;
struct Point{
int v,i;
Point(int vv,int ii){
v=vv,i=ii;
}
};
vector<Point>chain[MAX];
vector<int>head_chain[MAX];
//vector<int>chain_point;
int chain_from[MAX],chain_to[MAX],chain_val[MAX];
int pre[MAX];
struct Edge{
int u,v,next;
}edge[MAX*2];
int head[MAX],tot,n,m;
int sum[MAX],dp[MAX];
int parent[MAX],depth[MAX];
bool color[MAX];
void addedge(int u,int v){
edge[tot].u=u;
edge[tot].v=v;
edge[tot].next=head[u];
head[u]=tot++;
}
int get_point(int i){
// chain_point.clear();
int res=0;
int u=chain_from[i],v=chain_to[i];
if(depth[u]<depth[v]) swap(u,v);
while(depth[u]>depth[v]){
// chain_point.push_back(u);
res+=(sum[u]-dp[u]);
u=parent[u];
}
while(u!=v){
// chain_point.push_back(u);
// chain_point.push_back(v);
res+=(sum[u]-dp[u]);
res+=(sum[v]-dp[v]);
u=parent[u];
v=parent[v];
}
res+=sum[u];
// chain_point.push_back(u);
return res;
}
void dfs(int u,int par){
sum[u]=0;
for(int e=head[u];e!=-1;e=edge[e].next){
int v=edge[e].v;
if(v!=par){
dfs(v,u);
sum[u]+=dp[v];
}
}
dp[u]=sum[u];
if(head_chain[u].size()){
int sz=head_chain[u].size();
int tmp,index,tsz;
for(int i=0;i<sz;i++){
index=head_chain[u][i];
tmp=get_point(index);
// tmp=0; tsz=chain_point.size();
// for(int k=0;k<tsz;k++){
// tmp+=(sum[chain_point[k]]-dp[chain_point[k]]);
// }
dp[u]=max(dp[u],tmp+chain_val[index]);
}
}
}
int findx(int u){
int x=u;
while(pre[u]!=-1){
u=pre[u];
}
while(pre[x]!=-1){
int t=pre[x];
pre[x]=u;
x=t;
}
return u;
}
void DFS(int u,int par,int dep){
parent[u]=par;
depth[u]=dep;
for(int e=head[u];e!=-1;e=edge[e].next){
int v=edge[e].v;
if(v!=par){
DFS(v,u,dep+1);
pre[findx(v)]=u;
}
}
color[u]=true;
int sz=chain[u].size(),v;
for(int i=0;i<sz;i++){
v=chain[u][i].v;
if(color[v]){
head_chain[findx(v)].push_back(chain[u][i].i);
}
}
}
/*
void get_head(int i){
int u=chain_from[i],v=chain_to[i];
if(depth[u]<depth[v]) swap(u,v);
while(depth[u]>depth[v]){
u=parent[u];
}
while(u!=v){
u=parent[u],v=parent[v];
}
head_chain[u].push_back(i);
}
*/
int main(){
int T,u,v;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
tot=0;
memset(head,-1,sizeof(head));
memset(pre,-1,sizeof(pre));
memset(color,false,sizeof(color));
for(int i=1;i<n;i++){
scanf("%d%d",&u,&v);
addedge(u,v);
addedge(v,u);
head_chain[i].clear();
chain[i].clear();
}
chain[n].clear();
head_chain[n].clear();
for(int i=1;i<=m;i++){
scanf("%d%d%d",&chain_from[i],&chain_to[i],&chain_val[i]);
chain[chain_from[i]].push_back(Point(chain_to[i],i));
chain[chain_to[i]].push_back(Point(chain_from[i],i));
// get_head(i);
}
DFS(1,1,1);
dfs(1,0);
printf("%d
",dp[1]);
}
return 0;
}
http://blog.csdn.net/qq_24451605/article/details/47003497
简单的代码,其实写起来真的不难,主要是优化没想到。。。。
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#define MAX 200007
using namespace std;
int n,m,t;
typedef long long LL;
LL d[MAX];
LL sum[MAX];
LL c1[MAX<<1];
LL c2[MAX<<1];
int lowbit ( int x )
{
return x&-x;
}
void add1 ( int x , LL v )
{
while ( x <= n )
{
c1[x] += v;
x += lowbit ( x );
}
}
void add2 ( int x , LL v )
{
while ( x <= n )
{
c2[x] += v;
x += lowbit ( x );
}
}
LL sum1 ( int x )
{
LL res = 0;
while ( x )
{
res += c1[x];
x -= lowbit ( x );
}
return res;
}
LL sum2 ( int x )
{
LL res = 0;
while ( x )
{
res += c2[x];
x -= lowbit ( x );
}
return res;
}
typedef pair<int,int> PII;
vector<int> e[MAX];
vector<int> chain[MAX];
vector<PII> a[MAX];
vector<LL> w[MAX];
vector<LL> val[MAX];
int fa[MAX];
int times;
bool used[MAX];
int l[MAX];
int r[MAX];
int _find ( int x )
{
return fa[x] == x ? x: fa[x] = _find ( fa[x]);
}
void LCA ( int u )
{
fa[u] = u;
l[u] = ++times;
used[u] = true;
for ( int i = 0 ; i < e[u].size() ; i++ )
{
int v = e[u][i];
if ( used[v] ) continue;
LCA ( v );
fa[v] = u;
}
for ( int i = 0 ; i < chain[u].size() ; i++ )
{
int v = chain[u][i];
if ( !used[v] ) continue;
int x = _find ( v );
a[x].push_back ( make_pair ( u , v ));
w[x].push_back ( val[u][i] );
}
r[u] = ++times;
}
void dfs ( int u , int p )
{
sum[u] = 0;
d[u] = 0;
for ( int i = 0 ; i < e[u].size() ; i++ )
{
int v = e[u][i];
if ( v == p ) continue;
dfs ( v , u );
sum[u] += d[v];
}
for ( int i = 0 ; i < a[u].size() ; i++ )
{
int x = a[u][i].first;
int y = a[u][i].second;
LL temp = sum1(l[x]) + sum1(l[y]) + sum[u]
-sum2(l[x]) - sum2(l[y]);
d[u] = max ( temp + w[u][i] , d[u] );
}
d[u] = max ( d[u] , sum[u] );
add1 ( l[u] , sum[u] );
add1 ( r[u] , -sum[u] );
add2 ( l[u] , d[u] );
add2 ( r[u] , -d[u] );
}
void init ( )
{
times = 0;
memset ( c1 , 0 , sizeof ( c1 ) );
memset ( c2 , 0 , sizeof ( c2 ));
memset ( used , 0 , sizeof ( used ));
for ( int i = 0 ; i < MAX ; i++ )
{
e[i].clear();
val[i].clear();
a[i].clear();
w[i].clear();
chain[i].clear();
}
}
int main ( )
{
int u,v,x;
scanf ( "%d" , &t );
while ( t-- )
{
init();
scanf ( "%d%d" , &n , &m );
int nn = n-1;
while ( nn-- )
{
scanf ( "%d%d" , &u , &v );
e[u].push_back ( v );
e[v].push_back ( u );
}
n = n*2;
while ( m-- )
{
scanf ( "%d%d%d" , &u , &v , &x );
chain[u].push_back ( v );
chain[v].push_back ( u );
val[u].push_back ( x );
val[v].push_back ( x );
}
//cout <<"YES" << endl;
LCA ( 1 );
dfs ( 1, -1 );
printf ( "%I64d
" , d[1] );
}
}