zoukankan      html  css  js  c++  java
  • yolo模型的特点与各版本性能对比

    目录

    一、YOLOV1

    二、YOLOV2

    二、YOLOV3

    正文

    目前,基于深度学习的目标检测算法大致可以分为两大流派:
    1.两阶段(two-stage)算法:先产生候选区域然后再进行CNN分类(RCNN系列);
    2.单阶段(one-stage)算法:直接对输入图像应用算法并输出类别和相应的定位(YOLO系列);

    yolo是继RCNN,fast-RCNN 和 faster-RCNN之后,Ross Girshick 针对 DL 目标检测速度问题提出的另外一种框架。目前已经更新到第三版,

     官网地址:http://pjreddie.com/darknet/yolo/ ,接下来逐一介绍下。

    一、YOLOV1

     1、基本思路:利用整张图作为网络的输入,直接在输出层回归bounding box(边界框)的位置及其所属的类别。

     2、实现方法:将一幅图像分成 SxS 个网格(grid cell),如果某个 object 的中心落在这个网格中,则这个网格就负责预测这个 object。 

         

    每个网格要预测 B 个 bounding box,每个 bounding box 除了要回归自身的位置之外,还要附带预测一个 confidence 值。

    这个 confidence 代表了所预测的 box 中含有 object 的置信度和这个 box 预测的有多准这两重信息,其值是这样计算的:  

     其中如果有 object 落在一个 grid cell 里,第一项取 1,否则取 0。 第二项是预测的 bounding box 和实际的 groundtruth 之间的 IoU 值。

    每个 bounding box 要预测 (x, y, w, h) 和 confidence 共5个值,每个网格还要预测一个类别信息,记为 C 类。则 SxS个 网格,每个网格要预测 B 个 bounding box 还要预测 C 个 categories。输出就是 S x S x (5*B+C) 的一个 tensor。

    注意:class 信息是针对每个网格的,confidence 信息是针对每个 bounding box 的。举例说明: 在 PASCAL VOC 中,图像输入为 448x448,取 S=7,B=2,一共有20 个类别(C=20),则输出就是 7x7x30 的一个 tensor。

    在 test 的时候,每个网格预测的 class 信息和 bounding box 预测的 confidence信息相乘,就得到每个 bounding box 的 class-specific confidence score:

    等式左边第一项就是每个网格预测的类别信息,第二、三项就是每个 bounding box 预测的 confidence。这个乘积即 encode 了预测的 box 属于某一类的概率,也有该 box 准确度的信息。

    在 test 的时候,每个网格预测的 class 信息和 bounding box 预测的 confidence信息相乘,就得到每个 bounding box 的 class-specific confidence score:

    等式左边第一项就是每个网格预测的类别信息,第二、三项就是每个 bounding box 预测的 confidence。这个乘积即 encode 了预测的 box 属于某一类的概率,也有该 box 准确度的信息。得到每个 box 的 class-specific confidence score 以后,设置阈值,滤掉得分低的 boxes,对保留的 boxes 进行 NMS 处理,就得到最终的检测结果。

    注:

    >由于输出层为全连接层,因此在检测时,YOLO 训练模型只支持与训练图像相同的输入分辨率。

    >虽然每个格子可以预测 B 个 bounding box,但是最终只选择只选择 IOU 最高的 bounding box 作为物体检测输出,即每个格子最多只预测出一个物体。当物体占画面比例较小,如图像中包含畜群或鸟群时,每个格子包含多个物体,但却只能检测出其中一个。这是 YOLO 方法的一个缺陷。

    3、实现细节:

    每个 grid 有 30 维,这 30 维中,8 维是回归 box 的坐标,2 维是 box的 confidence,还有 20 维是类别。 

    其中坐标的 x, y 用对应网格的 offset 归一化到 0-1 之间,w, h 用图像的 width 和 height 归一化到 0-1 之间。

    在实现中,最主要的就是怎么设计损失函数,让这个三个方面得到很好的平衡。作者简单粗暴的全部采用了 sum-squared error loss 来做这件事。

     存在问题:

    该方法存在以下几个问题: 

    >8维的 localization error 和20维的 classification error 同等重要显然是不合理的; 

    >如果一个网格中没有 object(一幅图中这种网格很多),那么就会将这些网格中的 box 的 confidence push 到 0,相比于较少的有 object 的网格,这种做法是 overpowering 的,这会导致网络不稳定甚至发散。

    解决办法:

    >更重视8维的坐标预测,给这些损失前面赋予更大的 loss weight, 记为在 pascal VOC 训练中取 5。

    >对没有 object 的 box 的 confidence loss,赋予小的 loss weight,记为在 pascal VOC 训练中取 0.5。

    >有 object 的 box 的 confidence loss 和类别的 loss 的 loss weight 正常取 1。

    >对不同大小的 box 预测中,相比于大 box 预测偏一点,小 box 预测偏一点肯定更不能被忍受的。而 sum-square error loss 中对同样的偏移 loss 是一样。

    >为了缓和这个问题,作者用了一个比较取巧的办法,就是将 box 的 width 和 height 取平方根代替原本的 height 和 width。这个参考下面的图很容易理解,小box 的横轴值较小,发生偏移时,反应到y轴上相比大 box 要大。(也是个近似逼近方式)

    一个网格预测多个 box,希望的是每个 box predictor 专门负责预测某个 object。具体做法就是看当前预测的 box 与 ground truth box 中哪个 IoU 大,就负责哪个。这种做法称作 box predictor 的 specialization。

    最后整个的损失函数如下所示: 

    这个损失函数中: 

    • 只有当某个网格中有 object 的时候才对 classification error 进行惩罚。

    • 只有当某个 box predictor 对某个 ground truth box 负责的时候,才会对 box 的 coordinate error 进行惩罚,而对哪个 ground truth box 负责就看其预测值和 ground truth box 的 IoU 是不是在那个 cell 的所有 box 中最大。

    其他细节,例如使用激活函数使用 leak RELU,模型用 ImageNet 预训练等等,在这里就不一一赘述了。

    注:

    *YOLO 方法模型训练依赖于物体识别标注数据,因此,对于非常规的物体形状或比例,YOLO 的检测效果并不理想。

    *YOLO 采用了多个下采样层,网络学到的物体特征并不精细,因此也会影响检测效果。

    * YOLO 的损失函数中,大物体 IOU 误差和小物体 IOU 误差对网络训练中 loss 贡献值接近(虽然采用求平方根方式,但没有根本解决问题)。因此,对于小物体,小的 IOU 误差也会对网络优化过程造成很大的影响,从而降低了物体检测的定位准确性。

    二、YOLOV2

        建立在YOLOv1的基础上,经过Joseph Redmon等的改进,YOLOv2和YOLO9000算法在2017年CVPR上被提出,重点解决YOLOv1召回率和定位精度方面的误差。在提出时,YOLOv2在多种监测数据集中都要快过其他检测系统,并可以在速度与精确度上进行权衡。

       文章提出了一种新的训练方法–联合训练算法。这种算法可以把这两种的数据集混合到一起。使用一种分层的观点对物体进行分类,用巨量的分类数据集数据来扩充检测数据集,从而把两种不同的数据集混合起来。基本思路就是:同时在检测数据集和分类数据集上训练物体检测器(Object Detectors ),用监测数据集的数据学习物体的准确位置,用分类数据集的数据来增加分类的类别量、提升鲁棒性。YOLO9000 就是使用联合训练算法训练出来的,他拥有 9000 类的分类信息,这些分类信息学习自ImageNet分类数据集,而物体位置检测则学习自 COCO 检测数据集。

      YOLOV2着重改善 recall,提升定位的准确度,同时保持分类的准确度。

        改进方法1:Batch Normalization

        使用 Batch Normalization 对网络进行优化,让网络提高了收敛性,同时还消除了对其他形式的正则化(regularization)的依赖。通过对 YOLO 的每一个卷积层增加 Batch Normalization,最终使得 mAP 提高了 2%,同时还使模型正则化。使用 Batch Normalization 可以从模型中去掉 Dropout,而不会产生过拟合。

       改进方法2:High resolution classifier

       YOLO 从 224*224 增加到了 448*448,这就意味着网络需要适应新的输入分辨率。为了适应新的分辨率,YOLO v2 的分类网络以 448*448 的分辨率先在 ImageNet上进行微调,微调 10 个 epochs,让网络有时间调整滤波器(filters),好让其能更好的运行在新分辨率上,还需要调优用于检测的 Resulting Network。最终通过使用高分辨率,mAP 提升了 4%。

       改进方法3:Convolution with anchor boxes

       YOLO 一代包含有全连接层,从而能直接预测 Bounding Boxes 的坐标值。  Faster R-CNN 的方法只用卷积层与 Region Proposal Network 来预测 Anchor Box 偏移值与置信度,而不是直接预测坐标值。作者发现通过预测偏移量而不是坐标值能够简化问题,让神经网络学习起来更容易。YOLOv2 去掉了全连接层,使用 Anchor Boxes 来预测 Bounding Boxes。同时去掉了网络中一个池化层,这让卷积层的输出能有更高的分辨率。收缩网络让其运行在 416*416 而不是 448*448。由于图片中的物体都倾向于出现在图片的中心位置,特别是那种比较大的物体,所以有一个单独位于物体中心的位置用于预测这些物体。YOLO 的卷积层采用 32 这个值来下采样图片,所以通过选择 416*416 用作输入尺寸最终能输出一个 13*13 的特征图。 使用 Anchor Box 会让精确度稍微下降,但用了它能让 YOLO 能预测出大于一千个框,同时 recall 达到88%,mAP 达到 69.2%。

         改进方法4:Dimension clusters

    之前 Anchor Box 的尺寸是手动选择的,所以尺寸还有优化的余地。 为了优化,在训练集的 Bounding Boxes 上跑一下 k-means聚类,来找到一个比较好的值。

    如果我们用标准的欧式距离的 k-means,尺寸大的框比小框产生更多的错误。因为我们的目的是提高 IOU 分数,这依赖于 Box 的大小,所以距离度量的使用: 

     

      改进方法4:Direct location prediction

    用 Anchor Box 的方法,会让 model 变得不稳定,尤其是在最开始的几次迭代的时候。大多数不稳定因素产生自预测 Box 的(x,y)位置的时候。按照之前 YOLO的方法,网络不会预测偏移量,而是根据 YOLO 中的网格单元的位置来预测坐标,这就让 Ground Truth 的值介于 0 到 1 之间。而为了让网络的结果能落在这一范围内,网络使用一个 Logistic Activation 来对于网络预测结果进行限制,让结果介于 0 到 1 之间。 网络在每一个网格单元中预测出 5 个 Bounding Boxes,每个 Bounding Boxes 有五个坐标值 tx,ty,tw,th,t0,他们的关系见下图(Figure3)。假设一个网格单元对于图片左上角的偏移量是 cx、cy,Bounding Boxes Prior 的宽度和高度是 pw、ph,那么预测的结果见下图右面的公式: 

    因为使用了限制让数值变得参数化,也让网络更容易学习、更稳定。Dimension clusters和Direct location prediction,使 YOLO 比其他使用 Anchor Box 的版本提高了近5%。

       改进方法5:Fine- grained Features

      YOLO 修改后的特征图大小为 13*13,这个尺寸对检测图片中尺寸大物体来说足够了,同时使用这种细粒度的特征对定位小物体的位置可能也有好处。Faster-RCNN、SSD 都使用不同尺寸的特征图来取得不同范围的分辨率,而 YOLO 采取了不同的方法,YOLO 加上了一个 Passthrough Layer 来取得之前的某个 26*26 分辨率的层的特征。这个 Passthrough layer 能够把高分辨率特征与低分辨率特征联系在一起,联系起来的方法是把相邻的特征堆积在不同的 Channel 之中,这一方法类似与 Resnet 的 Identity Mapping,从而把 26*26*512 变成 13*13*2048。YOLO 中的检测器位于扩展后(expanded )的特征图的上方,所以他能取得细粒度的特征信息,这提升了 YOLO 1% 的性能。

        改进方法6:Multi-scale Training

    区别于之前的补全图片的尺寸的方法,YOLOv2 每迭代几次都会改变网络参数。每 10 个 Batch,网络会随机地选择一个新的图片尺寸,由于使用了下采样参数是  32,所以不同的尺寸大小也选择为 32 的倍数 {320,352…..608},最小 320*320,最大 608*608,网络会自动改变尺寸,并继续训练的过程。这一政策让网络在不同的输入尺寸上都能达到一个很好的预测效果,同一网络能在不同分辨率上进行检测。当输入图片尺寸比较小的时候跑的比较快,输入图片尺寸比较大的时候精度高,所以你可以在 YOLOv2 的速度和精度上进行权衡。

     相比于YOLOv1,YOLOv2可以更快,更强。

    YOLO 使用的是 GoogLeNet 架构,比 VGG-16 快,YOLO 完成一次前向过程只用 85.2 亿次运算,而 VGG-16 要 306.9 亿次。

    YOLO v2 基于一个新的分类模型darknet19。YOLO v2 使用 3*3 的 filter,每次池化之后都增加一倍 Channels 的数量。YOLO v2 使用全局平均池化,使用 Batch Normilazation 来让训练更稳定,加速收敛,使模型规范化。最终的模型Darknet19,有 19 个卷积层和 5 个 maxpooling 层,处理一张图片只需要 55.8 亿次运算,在 ImageNet 上达到 72.9% top-1 精确度,91.2% top-5 精确度。在训练时,如果把整个网络在更大的448*448分辨率上Fine Turnning 10个 epoches,初始学习率设置为0.001,这种网络达到达到76.5%top-1精确度,93.3%top-5精确度。

    二、YOLOV3

          YOLOv3 在 Pascal Titan X 上处理 608x608 图像速度可以达到 20FPS,在 COCO test-dev 上 mAP@0.5 达到 57.9%,与RetinaNet(FocalLoss论文所提出的单阶段网络)的结果相近,并且速度快 4 倍.模型比之前的模型复杂了不少,可以通过改变模型结构的大小来权衡速度与精度。

     YOLOv3 的先验检测(Prior detection)系统将分类器或定位器重新用于执行检测任务。他们将模型应用于图像的多个位置和尺度。而那些评分较高的区域就可以视为检测结果。此外,相对于其它目标检测方法,我们使用了完全不同的方法。我们将一个单神经网络应用于整张图像,该网络将图像划分为不同的区域,因而预测每一块区域的边界框和概率,这些边界框会通过预测的概率加权。我们的模型相比于基于分类器的系统有一些优势。它在测试时会查看整个图像,所以它的预测利用了图像中的全局信息。与需要数千张单一目标图像的 R-CNN 不同,它通过单一网络评估进行预测。这令 YOLOv3 非常快,一般它比 R-CNN 快 1000 倍、比 Fast R-CNN 快 100 倍。

         改进方法1:多尺度预测 (类FPN)

    每种尺度预测 3 个 box, anchor 的设计方式仍然使用聚类,得到9个聚类中心,将其按照大小均分给 3 个尺度

    • 尺度1: 在基础网络之后添加一些卷积层再输出box信息

    • 尺度2: 从尺度1中的倒数第二层的卷积层上采样(x2)再与最后一个 16x16 大小的特征图相加,再次通过多个卷积后输出 box 信息,相比尺度1变大两倍

    • 尺度3: 与尺度2类似,使用了 32x32 大小的特征图

         改进方法2:更好的基础分类网络darknet53

             darknet-53 与 ResNet-101 或 ResNet-152 准确率接近,但速度更快,

         

          检测网络:

            YOLOv3 在 mAP@0.5 及小目标 APs 上具有不错的结果,但随着 IOU的增大,性能下降,说明 YOLOv3 不能很好地与 ground truth 切合.

         改进方法3:分类器-类别预测

             不使用 Softmax 对每个框进行分类,主要考虑因素有:

    1. Softmax 使得每个框分配一个类别(得分最高的一个),而对于 Open Images这种数据集,目标可能有重叠的类别标签,因此 Softmax不适用于多标签分类。
    2. Softmax 可被独立的多个 logistic 分类器替代,且准确率不会下降。 
    3. 分类损失采用 binary cross-entropy loss         若要参考其它网络,可访问该链接:https://blog.csdn.net/f290131665/article/details/81012556
  • 相关阅读:
    使用tcmalloc编译启动时宕机
    使用tcmalloc编译出现undefined reference to `sem_init'
    使用AddressSanitizer做内存分析(一)——入门篇
    VIM-美化你的标签栏
    Entity Framework Code First (六)存储过程
    Entity Framework Code First (五)Fluent API
    Entity Framework Code First (四)Fluent API
    Entity Framework Code First (三)Data Annotations
    Entity Framework Code First (二)Custom Conventions
    Entity Framework Code First (一)Conventions
  • 原文地址:https://www.cnblogs.com/jimchen1218/p/11834944.html
Copyright © 2011-2022 走看看