zoukankan      html  css  js  c++  java
  • 多线程同步synchornized、volatile、Atomic、CountDownLatch示例

    synchronized关键字

      锁对象。synchronized(this)和synchronized方法都是锁当前对象。

    import java.util.concurrent.TimeUnit;
    
    public class Test_01 {
        private int count = 0;
        private Object o = new Object();
    
        public static void main(String[] args) {
            final Test_01 t = new Test_01();
            new Thread(new Runnable() {
                @Override
                public void run() {
                    t.testSync2();
                }
            }, "testSync2").start();
            new Thread(new Runnable() {
                @Override
                public void run() {
                    t.testSync1();
                }
            }, "testSync1").start();
            new Thread(new Runnable() {
                @Override
                public void run() {
                    t.testSync3();
                }
            }, "testSync3").start();
        }
    
        public void testSync1() {
            synchronized (o) {
                System.out.println(Thread.currentThread().getName()
                        + " count = " + count++);
                try {
                    TimeUnit.SECONDS.sleep(3);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    
        public void testSync2() {
            synchronized (this) {
                System.out.println(Thread.currentThread().getName()
                        + " count = " + count++);
                try {
                    TimeUnit.SECONDS.sleep(3);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    
        public synchronized void testSync3() {
            System.out.println(Thread.currentThread().getName()
                    + " count = " + count++);
            try {
                TimeUnit.SECONDS.sleep(3);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    
    }

      同步方法 - static:静态同步方法,锁的是当前类型的类对象。在代码中就是类名.class

    import java.util.concurrent.TimeUnit;
    
    public class Test_02 {
        private static int staticCount = 0;
    
        public static synchronized void testSync4() {
            System.out.println(Thread.currentThread().getName()
                    + " staticCount = " + staticCount++);
            try {
                TimeUnit.SECONDS.sleep(3);
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }
    
        public static void testSync5() {
            synchronized (Test_02.class) {
                System.out.println(Thread.currentThread().getName()
                        + " staticCount = " + staticCount++);
            }
        }
    
    }

      同步方法 - 原子性
      加锁的目的: 就是为了保证操作的原子性。

    public class Test_03 implements Runnable {
    
        private int count = 0;
    
        public static void main(String[] args) {
            Test_03 t = new Test_03();
            for (int i = 0; i < 5; i++) {
                new Thread(t, "Thread - " + i).start();
            }
        }
    
        @Override
        public /*synchronized*/ void run() {
            System.out.println(Thread.currentThread().getName()
                    + " count = " + count++);
        }
    
    }

      同步方法 - 同步方法和非同步方法的调用
      同步方法只影响锁定同一个锁对象的同步方法。不影响其他线程调用非同步方法,或调用其他锁资源的同步方法。

    public class Test_04 {
        Object o = new Object();
    
        public static void main(String[] args) {
            Test_04 t = new Test_04();
            new Thread(new Test_04.MyThread01(0, t)).start();
            new Thread(new Test_04.MyThread01(1, t)).start();
            new Thread(new Test_04.MyThread01(-1, t)).start();
        }
    
        public synchronized void m1() { // 重量级的访问操作。
            System.out.println("public synchronized void m1() start");
            try {
                Thread.sleep(3000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("public synchronized void m1() end");
        }
    
        public void m3() {
            synchronized (o) {
                System.out.println("public void m3() start");
                try {
                    Thread.sleep(1500);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println("public void m3() end");
            }
        }
    
        public void m2() {
            System.out.println("public void m2() start");
            try {
                Thread.sleep(1500);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("public void m2() end");
        }
    
        public static class MyThread01 implements Runnable {
            int i;
            Test_04 t;
    
            public MyThread01(int i, Test_04 t) {
                this.i = i;
                this.t = t;
            }
    
            public void run() {
                if (i == 0) {
                    t.m1();
                } else if (i > 0) {
                    t.m2();
                } else {
                    t.m3();
                }
            }
        }
    
    }

      结果:

    public synchronized void m1() start
    public void m2() start
    public void m3() start
    public void m2() end
    public void m3() end
    public synchronized void m1() end

      同步方法 - 多方法调用原子性问题(业务)
      同步方法只能保证当前方法的原子性,不能保证多个业务方法之间的互相访问的原子性。
      注意:在商业开发中,多方法要求结果访问原子操作,需要多个方法都加锁,且锁定统一个资源。一般来说,商业项目中,不考虑业务逻辑上的脏读问题。

    import java.util.concurrent.TimeUnit;
    
    public class Test_05 {
        private double d = 0.0;
    
        public static void main(String[] args) {
            final Test_05 t = new Test_05();
    
            new Thread(new Runnable() {
                @Override
                public void run() {
                    t.m1(100);
                }
            }).start();
            System.out.println(t.m2());
            try {
                TimeUnit.SECONDS.sleep(3);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(t.m2());
        }
    
        public synchronized void m1(double d) {
            try {
                // 相当于复杂的业务逻辑代码。
                TimeUnit.SECONDS.sleep(2);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            this.d = d;
        }
    
        public double m2() {
            return this.d;
        }
    
    }

      锁可重入: 同一个线程,多次调用同步代码,锁定同一个锁对象,可重入。

    import java.util.concurrent.TimeUnit;
    
    public class Test_06 {
    
        public static void main(String[] args) {
    
            new Test_06().m1();
    
        }
    
        synchronized void m1() { // 锁this
            System.out.println("m1 start");
            try {
                TimeUnit.SECONDS.sleep(2);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            m2();
            System.out.println("m1 end");
        }
    
        synchronized void m2() { // 锁this
            System.out.println("m2 start");
            try {
                TimeUnit.SECONDS.sleep(1);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("m2 end");
        }
    
    }

      同步方法 - 继承::类同步方法覆盖父类同步方法。可以指定调用父类的同步方法。相当于锁的重入。

    import java.util.concurrent.TimeUnit;
    
    public class Test_07 {
    
        public static void main(String[] args) {
            new Sub_Test_07().m();
        }
    
        synchronized void m() {
            System.out.println("Super Class m start");
            try {
                TimeUnit.SECONDS.sleep(1);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("Super Class m end");
        }
    
    }
    
    class Sub_Test_07 extends Test_07 {
        synchronized void m() {
            System.out.println("Sub Class m start");
            super.m();
            System.out.println("Sub Class m end");
        }
    }

      同步方法 - 锁与异常:当同步方法中发生异常的时候,自动释放锁资源。不会影响其他线程的执行。注意同步业务逻辑中,如果发生异常如何处理。

    import java.util.concurrent.TimeUnit;
    
    public class Test_08 {
        int i = 0;
    
        public static void main(String[] args) {
            final Test_08 t = new Test_08();
            new Thread(new Runnable() {
                @Override
                public void run() {
                    t.m();
                }
            }, "t1").start();
    
            new Thread(new Runnable() {
                @Override
                public void run() {
                    t.m();
                }
            }, "t2").start();
        }
    
        synchronized void m() {
            System.out.println(Thread.currentThread().getName() + " - start");
            while (true) {
                i++;
                System.out.println(Thread.currentThread().getName() + " - " + i);
                try {
                    TimeUnit.SECONDS.sleep(1);
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
                if (i == 5) {
                    i = 1 / 0;
                }
            }
        }
    
    }

      结果:

    t1 - start
    t1 - 1
    t1 - 2
    t1 - 3
    t1 - 4
    t1 - 5
    Exception in thread "t1" java.lang.ArithmeticException: / by zero
    t2 - start
        at concurrent.t01.Test_08.m(Test_08.java:43)
    t2 - 6
        at concurrent.t01.Test_08$1.run(Test_08.java:19)
        at java.base/java.lang.Thread.run(Thread.java:844)
    t2 - 7
    t2 - 8
    t2 - 9
    t2 - 10

    volatile关键字

      volatile的可见性:通知OS操作系统底层,在CPU计算过程中,都要检查内存中数据的有效性。保证最新的内存数据被使用。

    import java.util.concurrent.TimeUnit;
    
    public class Test_09 {
    
        volatile boolean b = true;
    
        public static void main(String[] args) {
            final Test_09 t = new Test_09();
            new Thread(new Runnable() {
                @Override
                public void run() {
                    t.m();
                }
            }).start();
    
            try {
                TimeUnit.SECONDS.sleep(1);
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
    
            t.b = false;
        }
    
        void m() {
            System.out.println("start");
            while (b) {
            }
            System.out.println("end");
        }
    }

      volatile的非原子性问题:只能保证可见性,不能保证原子性。不是枷锁问题,只是内存数据可见。

    public class Test_10 {
    
        volatile int count = 0;
    
        public static void main(String[] args) {
            final Test_10 t = new Test_10();
            List<Thread> threads = new ArrayList<>();
            for (int i = 0; i < 10; i++) {
                threads.add(new Thread(new Runnable() {
                    @Override
                    public void run() {
                        t.m();
                    }
                }));
            }
            for (Thread thread : threads) {
                thread.start();
            }
            for (Thread thread : threads) {
                try {
                    thread.join();
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
            System.out.println(t.count);
        }
    
        /*synchronized*/ void m() {
            for (int i = 0; i < 10000; i++) {
                count++;
            }
        }
    }

    AtomicXxx

      同步类型:原子操作类型。 其中的每个方法都是原子操作。可以保证线程安全。

    import java.util.ArrayList;
    import java.util.List;
    import java.util.concurrent.atomic.AtomicInteger;
    
    public class Test_11 {
        AtomicInteger count = new AtomicInteger(0);
    
        public static void main(String[] args) {
            final Test_11 t = new Test_11();
            List<Thread> threads = new ArrayList<>();
            for (int i = 0; i < 10; i++) {
                threads.add(new Thread(new Runnable() {
                    @Override
                    public void run() {
                        t.m();
                    }
                }));
            }
            for (Thread thread : threads) {
                thread.start();
            }
            for (Thread thread : threads) {
                try {
                    thread.join();
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
            System.out.println(t.count.intValue());
        }
    
        void m() {
            for (int i = 0; i < 10000; i++) {
                /*if(count.get() < 1000)*/
                count.incrementAndGet();
            }
        }
    }

      同步粒度问题:尽量在商业开发中避免同步方法。使用同步代码块。 细粒度解决同步问题。可以提高效率。

    public class Test_12 {
    
        synchronized void m1() {
            // 前置逻辑
            System.out.println("同步逻辑");
            // 后置逻辑
        }
    
        void m2() {
            // 前置逻辑
            synchronized (this) {
                System.out.println("同步逻辑");
            }
            // 后置逻辑
        }
    }

      对象变更问题:同步代码一旦加锁后,那么会有一个临时的锁引用执行锁对象,和真实的引用无直接关联。在锁未释放之前,修改锁对象引用,不会影响同步代码的执行。

    public class Test_13 {
        Object o = new Object();
    
        int i = 0;
    
        public static void main(String[] args) {
            final Test_13 t = new Test_13();
            new Thread(new Runnable() {
                @Override
                public void run() {
                    t.m();
                }
            }, "thread1").start();
            try {
                TimeUnit.SECONDS.sleep(3);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            Thread thread2 = new Thread(new Runnable() {
                @Override
                public void run() {
                    t.m();
                }
            }, "thread2");
            t.o = new Object();
            thread2.start();
    
            System.out.println(t.i);
            System.out.println(t.a());
            System.out.println(t.i);
        }
    
        int a() {
            try {
                /*
                 * return i ->
                 * int _returnValue = i; // 0;
                 * return _returnValue;
                 */
                return i;
            } finally {
                i = 10;
            }
        }
    
        void m() {
            System.out.println(Thread.currentThread().getName() + " start");
            synchronized (o) {
                while (true) {
                    try {
                        TimeUnit.SECONDS.sleep(1);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println(Thread.currentThread().getName() + " - " + o);
                }
            }
        }
    }

      结果:

    thread1 start
    thread1 - java.lang.Object@6018fac7
    thread1 - java.lang.Object@6018fac7
    thread1 - java.lang.Object@6018fac7
    0
    0
    10
    thread2 start
    thread1 - java.lang.Object@6edf18b4
    thread2 - java.lang.Object@6edf18b4
    thread1 - java.lang.Object@6edf18b4
    thread2 - java.lang.Object@6edf18b4
    thread1 - java.lang.Object@6edf18b4

      常量问题:在定义同步代码块时,不要使用常量对象作为锁对象。

      i1、i2会实现m1、m2方法的同步;s1、s2是不同的对象,不能实现m1、m2方法的同步。

    public class Test_14 {
        String s1 = "hello";
        String s2 = new String("hello"); // new关键字,一定是在堆中创建一个新的对象。
        Integer i1 = 1;
        Integer i2 = 1;
    
        public static void main(String[] args) {
            final Test_14 t = new Test_14();
            new Thread(new Runnable() {
                @Override
                public void run() {
                    t.m1();
                }
            }).start();
    
            new Thread(new Runnable() {
                @Override
                public void run() {
                    t.m2();
                }
            }).start();
        }
    
        void m1() {
            synchronized (i1) {
                System.out.println("m1()");
                while (true) {
    
                }
            }
        }
    
        void m2() {
            synchronized (i2) {
                System.out.println("m2()");
                while (true) {
    
                }
            }
        }
    
    }

    门闩 - CountDownLatch

      可以和锁混合使用,或替代锁的功能。在门闩未完全开放之前等待。当门闩完全开放后执行。避免锁的效率低下问题。

    import java.util.concurrent.CountDownLatch;
    import java.util.concurrent.TimeUnit;
    
    public class Test_15 {
        CountDownLatch latch = new CountDownLatch(5);
    
        public static void main(String[] args) {
            final Test_15 t = new Test_15();
            new Thread(new Runnable() {
                @Override
                public void run() {
                    t.m1();
                }
            }).start();
    
            new Thread(new Runnable() {
                @Override
                public void run() {
                    t.m2();
                }
            }).start();
        }
    
        void m1() {
            try {
                latch.await();// 等待门闩开放。
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("m1() method");
        }
    
        void m2() {
            for (int i = 0; i < 10; i++) {
                if (latch.getCount() != 0) {
                    System.out.println("latch count : " + latch.getCount());
                    latch.countDown(); // 减门闩上的锁。
                }
                try {
                    TimeUnit.MILLISECONDS.sleep(500);
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
                System.out.println("m2() method : " + i);
            }
        }
    
    }

      结果:

    latch count : 5
    m2() method : 0
    latch count : 4
    m2() method : 1
    latch count : 3
    m2() method : 2
    latch count : 2
    m2() method : 3
    latch count : 1
    m1() method
    m2() method : 4
    m2() method : 5
    m2() method : 6
    ...

    练习题

    自定义容器,提供新增元素(add)和获取元素数量(size)方法。
    启动两个线程。线程1向容器中新增10个数据。线程2监听容器元素数量,当容器元素数量为5时,线程2输出信息并终止。

      方法一(volatile的可见性):

    import java.util.ArrayList;
    import java.util.List;
    import java.util.concurrent.TimeUnit;
    
    public class Test_01 {
        public static void main(String[] args) {
            final Test_01_Container t = new Test_01_Container();
            new Thread(new Runnable() {
                @Override
                public void run() {
                    for (int i = 0; i < 10; i++) {
                        System.out.println("add Object to Container " + i);
                        t.add(new Object());
                        try {
                            TimeUnit.SECONDS.sleep(1);
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                    }
                }
            }).start();
    
            new Thread(new Runnable() {
                @Override
                public void run() {
                    while (true) {
                        if (t.size() == 5) {
                            System.out.println("size = 5");
                            break;
                        }
                    }
                }
            }).start();
        }
    }
    
    class Test_01_Container {
        volatile List<Object> container = new ArrayList<>();
    
        public void add(Object o) {
            this.container.add(o);
        }
    
        public int size() {
            return this.container.size();
        }
    }

      方法二(synchornized):

    import java.util.ArrayList;
    import java.util.List;
    import java.util.concurrent.TimeUnit;
    
    public class Test_02 {
        public static void main(String[] args) {
            final Test_02_Container t = new Test_02_Container();
            final Object lock = new Object();
    
            new Thread(new Runnable() {
                @Override
                public void run() {
                    synchronized (lock) {
                        if (t.size() != 5) {
                            try {
                                lock.wait(); // 线程进入等待队列。
                            } catch (InterruptedException e) {
                                e.printStackTrace();
                            }
                        }
                        System.out.println("size = 5");
                        lock.notifyAll(); // 唤醒其他等待线程
                    }
                }
            }).start();
    
            new Thread(new Runnable() {
                @Override
                public void run() {
                    synchronized (lock) {
                        for (int i = 0; i < 10; i++) {
                            System.out.println("add Object to Container " + i);
                            t.add(new Object());
                            if (t.size() == 5) {
                                lock.notifyAll();
                                try {
                                    lock.wait();
                                } catch (InterruptedException e) {
                                    e.printStackTrace();
                                }
                            }
                            try {
                                TimeUnit.SECONDS.sleep(1);
                            } catch (InterruptedException e) {
                                e.printStackTrace();
                            }
                        }
                    }
                }
            }).start();
        }
    }
    
    class Test_02_Container {
        List<Object> container = new ArrayList<>();
    
        public void add(Object o) {
            this.container.add(o);
        }
    
        public int size() {
            return this.container.size();
        }
    }

      方法三(门闩):

    import java.util.ArrayList;
    import java.util.List;
    import java.util.concurrent.CountDownLatch;
    import java.util.concurrent.TimeUnit;
    
    public class Test_03 {
        public static void main(String[] args) {
            final Test_03_Container t = new Test_03_Container();
            final CountDownLatch latch = new CountDownLatch(1);
    
            new Thread(new Runnable() {
                @Override
                public void run() {
                    if (t.size() != 5) {
                        try {
                            latch.await(); // 等待门闩的开放。 不是进入等待队列
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                    }
                    System.out.println("size = 5");
                }
            }).start();
    
            new Thread(new Runnable() {
                @Override
                public void run() {
                    for (int i = 0; i < 10; i++) {
                        System.out.println("add Object to Container " + i);
                        t.add(new Object());
                        if (t.size() == 5) {
                            latch.countDown(); // 门闩-1
                        }
                        try {
                            TimeUnit.SECONDS.sleep(1);
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                    }
                }
            }).start();
        }
    }
    
    class Test_03_Container {
        List<Object> container = new ArrayList<>();
    
        public void add(Object o) {
            this.container.add(o);
        }
    
        public int size() {
            return this.container.size();
        }
    }
  • 相关阅读:
    GO 文档笔记
    GO 切片实力踩坑
    关于接口设计的一些反思
    Jenkins 发布.net core 程序,服务端无法下载nuget包的解决方法 error NU1102: 找不到版本为 (>= 3.1.6) 的包
    RabbitMQ 基础概念进阶
    RabbitMQ 入门之基础概念
    Object.entries()使用
    shadow的属性值介绍
    行内元素的特别之处
    margin的特别之处
  • 原文地址:https://www.cnblogs.com/jing99/p/10618606.html
Copyright © 2011-2022 走看看