zoukankan      html  css  js  c++  java
  • 局部敏感哈希(LSH)之simhash和minhash

    minhash

    1. 把文档A分词形成分词向量L
    2. 使用K个hash函数,然后每个hash将L里面的分词分别进行hash,然后得到K个被hash过的集合
    3. 分别得到K个集合中的最小hash,然后组成一个长度为K的hash集合
    4. 最后用Jaccard index求出两篇文档的相似度

    simhash

    1. 把文档A分词形成分词向量L,L中的每一个元素都包涵一个分词C以及一个分词的权重W
    2. 对L中的每一个元素的分词C进行hash,得到C1,然后组成一个新的向量L1
    3. 初始化一个长度大于C1长度的向量V,所有元素初始化为0
    4. 分别判断L1中的每一个元素C1的第i位,如果C1i是1,那么Vi加上w,否则Vi减去w
    5. 最后判断V中的每一项,如果第i项大于0,那么第i项变成1,否则变成0
    6. 两篇文档a,b分别得到aV,bV
    6. 最后求出aV和bV的海明距离,一般距离不大于3的情况下说明两篇文档是相似的

    SimHash的工作原理

    SimHash算法工作流程图:
     
    • 1、分词,把需要判断文本分词形成这个文章的特征单词。最后形成去掉噪音词的单词序列并为每个词加上权重,我们假设权重分为5个级别(1~5)。比如:“ 美国“51区”雇员称内部有9架飞碟,曾看见灰色外星人 ” ==> 分词后为 “ 美国(4) 51区(5) 雇员(3) 称(1) 内部(2) 有(1) 9架(3) 飞碟(5) 曾(1) 看见(3) 灰色(4) 外星人(5)”,括号里是代表单词在整个句子里重要程度,数字越大越重要。

    • 2、hash,通过hash算法把每个词变成hash值,比如“美国”通过hash算法计算为 100101,“51区”通过hash算法计算为 101011。这样我们的字符串就变成了一串串数字,还记得文章开头说过的吗,要把文章变为数字计算才能提高相似度计算性能,现在是降维过程进行时。

    • 3、加权,通过 2步骤的hash生成结果,需要按照单词的权重形成加权数字串,比如“美国”的hash值为“100101”,通过加权计算为“4 -4 -4 4 -4 4”;“51区”的hash值为“101011”,通过加权计算为 “ 5 -5 5 -5 5 5”。

    • 4、合并,把上面各个单词算出来的序列值累加,变成只有一个序列串。比如 “美国”的 “4 -4 -4 4 -4 4”,“51区”的 “ 5 -5 5 -5 5 5”, 把每一位进行累加, “4+5 -4+-5 -4+5 4+-5 -4+5 4+5” ==》 “9 -9 1 -1 1 9”。这里作为示例只算了两个单词的,真实计算需要把所有单词的序列串累加。

    • 5、降维,把4步算出来的 “9 -9 1 -1 1 9” 变成 0 1 串,形成我们最终的simhash签名。 如果每一位大于0 记为 1,小于0 记为 0。最后算出结果为:“1 0 1 0 1 1”。

    整个过程图为:

    一个例子如下:
     
  • 相关阅读:
    vue+element ui 实现菜单无限极菜单
    DOM事件绑定原理和传播机制
    数组和对象的深浅克隆
    new源码分析和Object.create的重写
    原型和原型链的学习
    4.3 模型参数的延后初始化
    4.2 模型参数的访问、初始化和共享
    CSAPP Float Point
    4.1 模型构造
    3.16 实战Kaggle比赛:房价预测
  • 原文地址:https://www.cnblogs.com/jingsupo/p/10607764.html
Copyright © 2011-2022 走看看