zoukankan      html  css  js  c++  java
  • 面试-网络基础TCP和UDP的知识

    基本记录一下网络基础(TCP和UDP)的知识

    UDP和TCP

    UDP

    首先说一下概念,UDP是一种无连接传输层协议,提供面向事务的简单不可靠的信息传输服务

    特点:

    1.udp是无连接的,也就是发送数据包无需建立连接,并因此减少了开销和发送数据之前不必要的时延

    2.使用尽量努力交付数据

    3.是面向报文的

    可能你会有这样的疑问?那么为什么不直接使用IP协议而是要重新定义出一个UDP呢?

    一个重要的原因的是IP协议并没有端口,UDP可以多通道,将数据送到对应的接口里面去

    TCP

    首先说一下概念,TCP是一种面向连接、可靠、基于字节流的传输协议,属于5层或者7层网络协议中的传输层协议

    特点:

    面向连接:不同于UDP,TCP协议需要通信双方确定彼此已经建立连接后才可以进行数据传输;

    可靠:连接建立的双方在进行通信时,TCP保证了不会存在数据丢失,或是数据丢失后存在拯救丢失的措施;字节流:实际传输中,不论是何种数据,TCP都按照字节的方式传输,而非以数据包为单位。

    说一下TCP的三次握手,四次挥手,和具体每一步的操作和作用

    简单介绍一下TCP的报文

    字段 含义
    URG 紧急指针是否有效。为1,表示某一位需要被优先处理
    ACK 确认号是否有效,一般置为1。
    PSH 提示接收端应用程序立即从TCP缓冲区把数据读走。
    RST 对方要求重新建立连接,复位。
    SYN 请求建立连接,并在其序列号的字段进行序列号的初始值设定。建立连接,设置为1
    FIN 希望断开连接。

    三次握手

    三次握手示意图

    第一次握手:建立连接时,客户端发送syn包(syn=x)到服务器,并进入SYN_SENT状态,等待服务器确认;SYN:同步序列编号(Synchronize Sequence Numbers)

    保证了客户端发送正常

    第二次握手:服务器收到syn包,必须确认客户的SYN(ack=x+1),同时自己也发送一个SYN包(syn=y),即SYN+ACK包,此时服务器进入SYN_RECV状态;

    保证了服务端接受正常,发送正常

    第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=y+1),此包发送完毕,客户端和服务器进入ESTABLISHED(TCP连接成功)状态,完成三次握手。

    保证了客户端接受正常,创建连接成功,开始工作

    四次挥手

    四次挥手示意图

    1)客户端进程发出连接释放报文,并且停止发送数据。释放数据报文首部,FIN=1,其序列号为seq=u(等于前面已经传送过来的数据的最后一个字节的序号加1),此时,客户端进入FIN-WAIT-1(终止等待1)状态。 TCP规定,FIN报文段即使不携带数据,也要消耗一个序号。
    服务器收到连接释放报文,发出确认报文,ACK=1,ack=u+1,并且带上自己的序列号seq=v,此时,服务端就进入了CLOSE-WAIT(关闭等待)状态。TCP服务器通知高层的应用进程,客户端向服务器的方向就释放了,这时候处于半关闭状态,即客户端已经没有数据要发送了,但是服务器若发送数据,客户端依然要接受。这个状态还要持续一段时间,也就是整个CLOSE-WAIT状态持续的时间。
    (中断中发送未完成数据流 )客户端收到服务器的确认请求后,此时,客户端就进入FIN-WAIT-2(终止等待2)状态,等待服务器发送连接释放报文(在这之前还需要接受服务器发送的最后的数据)。
    2)服务器将最后的数据发送完毕后,就向客户端发送连接释放报文,FIN=1,ack=u+1,由于在半关闭状态,服务器很可能又发送了一些数据,假定此时的序列号为seq=w,此时,服务器就进入了LAST-ACK(最后确认)状态,等待客户端的确认。
    3)客户端收到服务器的连接释放报文后,必须发出确认,ACK=1,ack=w+1,而自己的序列号是seq=u+1,此时,客户端就进入了TIME-WAIT(时间等待)状态。注意此时TCP连接还没有释放,必须经过2∗∗MSL(最长报文段寿命)的时间后,当客户端撤销相应的TCB后,才进入CLOSED状态。
    4)服务器只要收到了客户端发出的确认,立即进入CLOSED状态。同样,撤销TCB后,就结束了这次的TCP连接。可以看到,服务器结束TCP连接的时间要比客户端早一些。

    关于TCP的面试题比较多一些,下面罗列几个面试题(网上总结的):

    【问题1】为什么连接的时候是三次握手,关闭的时候却是四次握手?
    答:因为当Server端收到Client端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。但是关闭连接时,当Server端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉Client端,"你发的FIN报文我收到了"。只有等到我Server端所有的报文都发送完了,我才能发送FIN报文,因此不能一起发送。故需要四步握手。
    【问题2】为什么TIME_WAIT状态需要经过2MSL(最大报文段生存时间)才能返回到CLOSE状态?
    答:虽然按道理,四个报文都发送完毕,我们可以直接进入CLOSE状态了,但是我们必须假象网络是不可靠的,有可以最后一个ACK丢失。所以TIME_WAIT状态就是用来重发可能丢失的ACK报文。在Client发送出最后的ACK回复,但该ACK可能丢失。Server如果没有收到ACK,将不断重复发送FIN片段。所以Client不能立即关闭,它必须确认Server接收到了该ACK。Client会在发送出ACK之后进入到TIME_WAIT状态。Client会设置一个计时器,等待2MSL的时间。如果在该时间内再次收到FIN,那么Client会重发ACK并再次等待2MSL。所谓的2MSL是两倍的MSL(Maximum Segment Lifetime)。MSL指一个片段在网络中最大的存活时间,2MSL就是一个发送和一个回复所需的最大时间。如果直到2MSL,Client都没有再次收到FIN,那么Client推断ACK已经被成功接收,则结束TCP连接。
    【问题3】为什么不能用两次握手进行连接?
    答:3次握手完成两个重要的功能,既要双方做好发送数据的准备工作(双方都知道彼此已准备好),也要允许双方就初始序列号进行协商,这个序列号在握手过程中被发送和确认。

    ###### 现在把三次握手改成仅需要两次握手,死锁是可能发生的。作为例子,考虑计算机S和C之间的通信,假定C给S发送一个连接请求分组,S收到了这个分组,并发 送了确认应答分组。按照两次握手的协定,S认为连接已经成功地建立了,可以开始发送数据分组。可是,C在S的应答分组在传输中被丢失的情况下,将不知道S 是否已准备好,不知道S建立什么样的序列号,C甚至怀疑S是否收到自己的连接请求分组。在这种情况下,C认为连接还未建立成功,将忽略S发来的任何数据分 组,只等待连接确认应答分组。而S在发出的分组超时后,重复发送同样的分组。这样就形成了死锁。

    【问题4】如果已经建立了连接,但是客户端突然出现故障了怎么办?TCP还设有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,白白浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75秒钟发送一次。若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。

    说一下TCP和UDP有什么不同处

    1、 TCP面向连接 (如打电话要先拨号建立连接); UDP是无连接 的,即发送数据之前不需要建立连接
    2、TCP提供可靠的服务。也就是说,通过TCP连接传送的数据,无差错,不丢失,不重复,且按序到达;UDP尽最大努力交付,即不保证可靠交付
    Tcp通过校验和,重传控制,序号标识,滑动窗口、确认应答实现可靠传输。如丢包时的重发控制,还可以对次序乱掉的分包进行顺序控制。
    3、UDP具有较好的实时性,工作效率比TCP高,适用于对高速传输和实时性有较高的通信或广播通信。
    4.每一条TCP连接只能是点到点的;UDP支持一对一,一对多,多对一和多对多的交互通信
    5、TCP对系统资源要求较多,UDP对系统资源要求较少。

    TCP那么好,那么为什么还需要UDP,UDP相对的优势在哪里

    UDP以其简单、传输快的优势,在越来越多场景下取代了TCP,如实时游戏。
    (1)网速的提升给UDP的稳定性提供可靠网络保障,丢包率很低,如果使用应用层重传,能够确保传输的可靠性。
    (2)TCP为了实现网络通信的可靠性,使用了复杂的拥塞控制算法,建立了繁琐的握手过程,由于TCP内置的系统协议栈中,极难对其进行改进。
    采用TCP,一旦发生丢包,TCP会将后续的包缓存起来,等前面的包重传并接收到后再继续发送,延时会越来越大,基于UDP对实时性要求较为严格的情况下,采用自定义重传机制,能够把丢包产生的延迟降到最低,尽量减少网络问题对游戏性造成影响。

    如何让UDP更不易丢包,变成可靠的UDP呢?

    我觉得这个问题比较复杂,咱们可以单独开一篇文章说明
    以上就是我整理的TCP和UDP的相关面试知识
    新博客 :https://jingzhe.xyz
  • 相关阅读:
    jupyter notebook代码添加行号(菜单中点击view后没有toggle line numbers选项)
    深度学习:tensorflow中激励函数的实现
    深度学习:padding、卷积、stride的计算
    深度学习:mAP(mean average precision)
    java实现桶排序
    java 数组实现队列和栈
    五步学习法
    技术团队组织架构
    Redis的高可用:哨兵和集群
    Redis限流的实现方式有3种
  • 原文地址:https://www.cnblogs.com/jingzheins/p/14060831.html
Copyright © 2011-2022 走看看