zoukankan      html  css  js  c++  java
  • [知识点] 8.2 图的存储与遍历

    总目录 > 8 图论 > 8.2 图的存储与遍历

    前言

    写到这里,不免想起当年高一的 NOIP2014 因为把邻接链表给写错了而差 5 分错过一等奖导致一路再起不能。

    子目录列表

    1、概述

    2、边存储

    3、邻接矩阵

    4、邻接表

    5、图的遍历

    8.2 图的存储与遍历

    1、概述

    数据结构往往有两种存储方式 —— 顺序和链式。顺序采用数组,链式多采用链表,图虽然结构复杂,但其实也是以这两种思路对其进行存储,只不过更为麻烦。

    首先,图的读入方式基本上是给定图的点数 n边数 m,然后对于 m 条边,每条边给定 u 和 v

    下面以有向赋权图举例(无向图直接视作双向边即可)

    2、边存储

    ① 概念

    直接将给定的 m 组 (u, v) 用数组存下来。

    ② 示例

    ③ 优劣势

    优势:

    最小生成树(请参见:8.3 最小生成树)中的 Kruskal 算法中,因为需要将边按边权排序,需要直接存边。

    劣势:

    遍历效率极低,时间复杂度高达 O(n * m),除特别需求基本不会采用。

    ④ 代码

    void add(int o, int _u, int _v, int _w) {
        u[o] = _u, v[o] = _v, w[o] = _w;
    }

    3、邻接矩阵

    ① 概念

    使用一个二维数组 a 来存储边,其中 a[u][v] = 1(无权图)/ 权值(赋权图) 时表示 u 和 v 之间存在一条边,= 0 时则不存在。根据权值范围,也可以用 -1 或其他方式表示不存在边。属于顺序存储结构。

    ② 示例

    ③ 优劣势

    优势:

    构建简单,能 O(1) 查询两点之间是否存在边。

    劣势:

    空间复杂度过高 —— O(n ^ 2),尤其在稀疏图中浪费了大量空间,n 在 5000+ 时空间就高达 128MB 的上限了。同时,邻接矩阵无法判断重边,遍历效率 O(n ^ 2) 同样不理想。

    ④ 代码

    void add(int u, int v, int w) {
        a[u][v] = w;
    }

    4、邻接表

    ① 概念

    使用 n 个可动态调整元素的数据结构构成的数组来存边,其中第 u 个数组的第 i 个元素表示以点 u 为起点的第 i 个终点。如果是赋权图,则需要使用结构体或类来同时存储终点与边权,必要的话可以存更多信息。属于链式存储结构

    对于 C++,可以使用 STL 中的 vector;普适性更强的则是使用邻接链表(链式前向星),即使用 n 个链表来存储。

    ② 示例

    ③ 构建步骤

    以使用链表为例。首先,对每个读入的边赋予一个编号 [1, m],以便于链表的建立与访问。建立一个类 Edge,存储每条边的终点 v边的权值 w,以及预留的链表中后继边的指针 nxt(不需要使用指针变量,但本质上是指针)。建立一个 h 数组,其中 h[i] 表示以结点 i 为起点的边的链表头编号,初始为 0。每读入一条边 (u, v),则更新第 u 条链表,将边存入 Edge 并链到给链表的链表头,其后继边的编号即原本链表头的边的编号 h[u],再更新链表头编号 h[u] 为当前的 Edge。

    觉得麻烦的可以使用 vector,效率会较低,但更易理解。

    ④ 优劣势

    优势:

    基本能应用到所有场合,遍历时间复杂度 O(n + m),空间复杂度 O(m) 都是无与伦比的。

    劣势:

    构建与遍历等操作使用起来会比邻接矩阵麻烦,不能 O(1) 查询边的存在。

    其他:

    如果需要对以某个点为起点的所有出边进行某种排序,则只能使用 vector。

    ⑤ 代码(使用链表)

    1 class Edge {
    2 public:
    3     int v, w, nxt;
    4 } e[MAXM];
    5 
    6 void add(int u, int v, int w) {
    7     tot++, e[tot] = (Edge) {v, w, h[u]}, h[u] = tot;
    8 }

    5、图的遍历

    在第三章的 3.1  DFS / BFS 搜索 中,我们已经介绍了 DFS / BFS,广义上它们用于进行各种搜索,而狭义本属于树与图的一种遍历算法,这里再以图的视角回顾一次。

    DFS,深度优先搜索,指在对树或图的遍历中,优先访问深度更深的结点。对于树而言,其实就是先序遍历,这里不提;对于图而言,DFS 相当于每次访问到一个新的结点后,马上访问其第一个后继结点,直到没有后继再回溯,再访问下一个后继结点,每次访问打上访问标记

    BFS,深度优先搜索,指在对树或图的遍历中,优先访问当前深度的结点。对于树而言,其实就是层次遍历,这里不提;对于图而言,DFS 相当于每次访问到一个新的结点后,会将其后继结点全部访问一次,再逐一访问其后继结点,每次访问打上访问标记。

    以上面的图为例,体现 DFS 与 BFS 的访问顺序的不同(假设从结点 1 开始访问):

    以邻接链表为图的存储方式,两种算法时间复杂度均为 O(n + m),空间复杂度均为 O(n)。

    当然,遍历只是一个框架,实际运用中,是在遍历的过程中求得图上的各种信息以输出或进行后续操作,比如求最短路径,连通块,最小环等等。

    下面给出 DFS 与 BFS 最基础的遍历代码:

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 
     4 #define MAXN 1005
     5 #define MAXM 10005
     6 
     7 int h[MAXN], tot, n, m, u, v, w, vis[MAXN]; 
     8 
     9 class Edge {
    10 public:
    11     int v, w, nxt;
    12 } e[MAXM];
    13 
    14 void add(int u, int v, int w) {
    15     tot++, e[tot] = (Edge) {v, w, h[u]}, h[u] = tot;
    16 }
    17 
    18 void dfs(int o) {
    19     for (int x = h[o]; x; x = e[o].nxt) {
    20         int v = e[x].v;
    21         if (!vis[v]) vis[v] = 1, dfs(v);
    22     }
    23 }
    24 
    25 void bfs() {
    26     int head = 1, tail = 2, q[MAXN];
    27     q[1] = vis[1] = 1;
    28     while (head != tail) {
    29         int o = q[head];
    30         for (int x = h[o]; x; x = e[o].nxt) {
    31             int v = e[x].v;
    32             if (!vis[v]) {
    33                 vis[v] = 1;
    34                 q[tail] = v, tail++;
    35             }
    36         }
    37         head++;
    38     }
    39 }
    40 
    41 int main() {
    42     cin >> n >> m;
    43     for (int i = 1; i <= m; i++) {
    44         cin >> u >> v >> w;
    45         add(u, v, w), add(v, u, w);
    46     }
    47     vis[1] = 1, dfs(1);
    48     memset(vis, 0, sizeof(vis));
    49     bfs();
    50     return 0;
    51 }
  • 相关阅读:
    [导入]Repeater与DataGrid的效率,到底哪个的更好?!(结论很可能和你认为的不一样!)
    开发工具的选择
    在WINDOWS 下删除EISA配置的隐藏分区
    DNN使用升级包升级
    DNN中代码创建用户的CreateUser()方法的疑问
    eWebEditor的数据库连接字符串
    c/c++笔试题目(林锐)
    如何下载网页中的flash文件
    DotNetNuke: System.Security.Cryptography.CryptographicException: Bad Data
    win7安装iis错误解决方法汇总
  • 原文地址:https://www.cnblogs.com/jinkun113/p/13040921.html
Copyright © 2011-2022 走看看