Description
![](http://www.lydsy.com/JudgeOnline/images/1562_1.jpg)
Input
![](http://www.lydsy.com/JudgeOnline/images/1562_2.jpg)
Output
![](http://www.lydsy.com/JudgeOnline/images/1562_3.jpg)
Sample Input
1 1 2 2 1
Sample Output
HINT
30%的数据中N≤50;
60%的数据中N≤500;
100%的数据中N≤10000。
题解:
二分图匹配模型很显然,但是不要看到二分图就去网络流了。。。注意到题目要求的是字典序最小的!如果你用Dinic算法去多路增广,根本无法保证字典序,除非用EK。据说也有边增广边调整的搞法,但是这么多花式搞法,前提都是你不知道匈牙利算法!匈牙利算法是一种非常简单的单路增广算法,不详解了。
这道题的重点在于你知道二分图匹配这个大专题之后怎么去求解。要求是字典序最小的解,这个很好解决。每次在插入边的时候,将字典序较大的边优先加入即可,每次优先匹配字典序较小的(因为后加入的先匹配)。
代码:
--------------------------------------------------------------------------------------------------
#include <cstdio>
#include <algorithm>
#include <vector>
#include <cstring>
using namespace std;
#define MAXN 20005
#define INF 0x3f3f3f3f
struct Edge { int v, next; } edge[MAXN];
int n, d, num[MAXN], ans[MAXN], vis[MAXN], now, h[MAXN];
void addEdge(int u, int v) { now++, edge[now] = (Edge) {v, h[u]}, h[u] = now; }
int DFS(int o)
{
for (int x = h[o]; x != -1; x = edge[x].next)
{
int v = edge[x].v;
if (!vis[v])
{
vis[v] = 1;
if (num[v] == -1 || DFS(num[v]))
{
ans[o] = v, num[v] = o;
return 1;
}
}
}
return 0;
}
void work()
{
int tot = 0;
for (int i = n - 1; i >= 0; i--)
{
memset(vis, 0, sizeof(vis));
if (DFS(i)) tot++; else break;
}
if (tot != n) printf("No Answer
");
else for (int i = 0; i < n; i++) printf("%d ", ans[i]);
}
int x;
int main()
{
freopen("transform.in", "r", stdin);
freopen("transform.out", "w", stdout);
memset(ans, -1, sizeof(ans)), memset(num, -1, sizeof(num)), memset(h, -1, sizeof(h));
scanf("%d", &n);
for (int i = 0; i <= n - 1; i++)
{
scanf("%d", &x);
int v1 = i + x >= n ? (i + x) % n : i + x;
int v2 = i - x < 0 ? i - x + n : i - x;
if (v1 < v2) swap(v1,v2);
addEdge(i, v1), addEdge(i, v2);
}
work();
return 0;
}
--------------------------------------------------------------------------------------------------