1、前言
正式开始的第一周的任务——把NOIP2010至NOIP2015的所有D1/2的T2/3写出暴力。共22题。
暴力顾名思义,用简单粗暴的方式解题,不以正常的思路思考。能够较好的保证正确性,但是最大的问题在于效率。搞OI这么久,每次考试也经常纠结于暴力与正解之间,其实这两者概念上本来就没有明显的界限,是一组相对概念。
下面尽可能的不提到正解,但是如果正解容易到我都能够轻松秒的话就还是说一下了。
普通的DFS/BFS搜索是暴力,但暴力不局限于此。根据向总的话,记忆化搜索亦属于暴力,名字逼格这么高分数肯定也高一些。什么是记忆化搜索呢?
记忆化搜索就是把我们之前搜索过的状态保存下来,在之后搜索再遇到这种状态时就可以避免重复搜索,直接调用上次搜索的结果即可。记忆化搜索适用于重复子结构较多的题目。
这样看上去貌似好熟悉。。。是啊很像动态规划。。。
我姑且把它理解为以DFS的形式来实现的动态规划吧,,,虽然向总始终说他不是动态规划。
Tips:(我写的/暴力最佳方式/正解)
2、NOIP2010
② tourist 乌龟棋(?/记忆化搜索/动态规划)
思路:30分暴力直接强行DFS跑所有情况不多说了。考虑本题有一个特别的地方——重叠子结构很多,经常可能出现使用卡片个数相同但是顺序不同的情况。如果直接DFS的话,会浪费大量时间。由于总状态比较少,4张卡片每张只有至多40张,故可以把所有状态存入一个四维数组,f[a][b][c][d]表示在剩下a张1,b张2,c张3,d张4时可以获得的最大分数。在DFS时如果遇到之前已经遇到过的状态,进行比对,选取较大值转移。这样可以省去大量时间,也就是所谓的记忆化搜索。然而一旦你把f[a][b][c][d]的状态转移方程写出来就会发现。。和动态规划有什么区别呢。
代码:
#include <cstdio> #include <cstring> #define MAXN 355 #define MAXM 45 int n, m, w[MAXN], x, t[5], f[MAXM][MAXM][MAXM][MAXM]; int max(int a, int b) { return a > b ? a : b; } int DFS(int o, int a, int b, int c, int d) { if (f[a][b][c][d] != -1) return f[a][b][c][d]; f[a][b][c][d] = 0; if (a) f[a][b][c][d] = max(DFS(o + 1, a - 1, b, c, d), f[a][b][c][d]); if (b) f[a][b][c][d] = max(DFS(o + 2, a, b - 1, c, d), f[a][b][c][d]); if (c) f[a][b][c][d] = max(DFS(o + 3, a, b, c - 1, d), f[a][b][c][d]); if (d) f[a][b][c][d] = max(DFS(o + 4, a, b, c, d - 1), f[a][b][c][d]); f[a][b][c][d] += w[o]; return f[a][b][c][d]; } int main() { freopen("tortoise.in", "r", stdin); freopen("tortoise.out", "w", stdout); scanf("%d %d", &n, &m); for (int i = 1; i <= n; i++) scanf("%d", &w[i]); for (int i = 1; i <= m; i++) scanf("%d", &x), t[x]++; memset(f, -1, sizeof(f)); printf("%d", DFS(1, t[1], t[2], t[3], t[4])); return 0; }
④ water 引水入城(?/BFS+枚举/BFS+动态规划)
思路:对于30分,题目明确是不能满足要求。。(我竟然没意识到这个的重要性)
3、NOIP2011
② hotel 选择客栈(动态规划/枚举+前缀和/搜索+优化??)
代码:
#include <cstdio> #define MAXN 200005 #define MAXK 65 int n, k, p, s, c, v, a[MAXN], f[MAXK][MAXN]; int main() { freopen("hotel.in", "r", stdin); freopen("hotel.out", "w", stdout); scanf("%d %d %d", &n, &k, &p); for (int i = 1; i <= n; i++) { scanf("%d %d", &c, &v); for (int j = 0; j < k; j++) f[j][i] = f[j][i - 1] + (j == c); s += (v <= p ? f[c][a[i] = i] - 1 : f[c][a[i] = a[i - 1]]); } printf("%d ", s); return 0; }
③ mayan Mayan游戏(搜索/搜索/搜索)
思路:太长不写。恶心死了。
⑤ qc 聪明的质检员(?/二分答案/二分答案)
思路:
代码:
⑥ bus 观光公交(?/最短路/贪心或网络流)
思路:
代码:
4、NOIP2012
② game 国王游戏(贪心/贪心/贪心)
思路:这个贪心到底是如何证明的还是不清楚啊,以前做过所以知道怎么贪心。但是我还是耿直的写了直接根据一只手来贪心50分。感觉题目好鬼。对了记得写高精度。
50分代码:
#include <cstdio> #include <algorithm> using namespace std; #define MAXN 1005 typedef long long ll; #ifdef WIN32 #define lld "%I64d" #else #define lld "%lld" #endif ll n, x0, y0, o, ans; struct Mst { ll x, y; } a[MAXN]; struct Cmp { bool operator () (Mst a, Mst b) { return a.y < b.y; } } x; int main() { freopen("game.in", "r", stdin); freopen("game.out", "w", stdout); scanf(lld lld lld, &n, &x0, &y0), o = x0; for (int i = 1; i <= n; i++) scanf(lld lld, &a[i].x, &a[i].y); sort(a + 1, a + n + 1, x); for (int i = 1; i <= n; i++) ans = max(ans, o / a[i].y), o *= a[i].x; printf(lld, ans); return 0; }
③ drive 开车旅行(?/枚举/倍增+set)
思路:就枚举吧。
⑤ classroom 借教室(线段树/线段树/二分答案+差分)
思路:30分模拟。可以很明显的看出来线段树是很适合这道题的,只要常数不是很大,100分到手(我也不知道怎么才会把常数写大)。
代码:
#include <cstdio> #define MAXN 1000005 int n, m, c[MAXN], d[MAXN], x[MAXN], y[MAXN], get; struct Tree { int v, f; } t[MAXN * 4]; int min(int a, int b) { return a < b ? a : b; } void build(int o, int l, int r) { if (l == r) { t[o].v = c[l]; return; } int mid = (l + r) >> 1; build(o << 1, l, mid), build(o << 1 | 1, mid + 1, r); t[o].v = min(t[o << 1].v, t[o << 1 | 1].v); } void pushDown(int o) { t[o << 1].v -= t[o].f, t[o << 1 | 1].v -= t[o].f; t[o << 1].f += t[o].f, t[o << 1 | 1].f += t[o].f; t[o].f = 0; } void dec(int o, int l, int r, int ql, int qr, int v) { if (get) return; if (t[o].f) pushDown(o); if (l == ql && r == qr) { t[o].v -= v, t[o].f += v; if (t[o].v < 0) get = 1; return; } int mid = (l + r) >> 1; if (qr <= mid) dec(o << 1, l, mid, ql, qr, v); else if (ql >= mid + 1) dec(o << 1 | 1, mid + 1, r, ql, qr, v); else dec(o << 1, l, mid, ql, mid, v), dec(o << 1 | 1, mid + 1, r, mid + 1, qr, v); t[o].v = min(t[o << 1].v, t[o << 1 | 1].v); } int main() { freopen("classroom.in", "r", stdin); freopen("classroom.out", "w", stdout); scanf("%d %d", &n, &m); for (int i = 1; i <= n; i++) scanf("%d", &c[i]); build(1, 1, n); for (int i = 1; i <= m; i++) { scanf("%d %d %d", &d[i], &x[i], &y[i]); dec(1, 1, n, x[i], y[i], d[i]); if (get) { printf("-1 %d", i); return 0; } } printf("0"); return 0; }
⑥ blockade 疫情控制(枚举/枚举/二分答案+贪心+倍增)
思路:20分枚举。
代码:
#include <cstdio> #include <algorithm> using namespace std; #define MAXN 10005 int n, u, v, w, m, a[MAXN]; int o, h[MAXN], vis[MAXN], res, b[MAXN], c[MAXN], btot, ctot; struct Edge { int v, next, w; } e[MAXN]; void addEdge(int u, int v, int w) { o++, e[o] = (Edge) {v, h[u], w}, h[u] = o; } void DFS(int o, int fa) { for (int x = h[o]; x; x = e[x].next) { int v = e[x].v; if (v == fa) continue; if (a[v]) res += a[v]; DFS(v, o); } } int work() { for (int x = h[1]; x; x = e[x].next) { int v = e[x].v; res = a[v], DFS(v, 1); if (!res) b[++btot] = e[x].w; else if (res != 1) c[++ctot] = e[x].w * (res - 1); } sort(b + 1, b + btot + 1), sort(c + 1, c + ctot + 1); return b[1] + c[ctot]; } int main() { freopen("blockade.in", "r", stdin); freopen("blockade.out", "w", stdout); scanf("%d", &n); for (int i = 1; i <= n - 1; i++) scanf("%d %d %d", &u, &v, &w), addEdge(u, v, w), addEdge(v, u, w); scanf("%d", &m); for (int i = 1; i <= m; i++) scanf("%d", &o), a[o]++; printf("%d", work()); return 0; }
5、NOIP2013
② match 火柴排队(树状数组+逆序对/枚举/树状数组或归并排序+逆序对)
思路:考虑给出的式子在什么情况下可以获得最小值?两列数组分别最大对最大,次大对次大……最小对最小。为了达到这一局面,求逆序对就行了!(就行了。哦。)这个点确实考的非常偏啊,如果没有提前看过的话怎么做?
这个插下逆序对的概念:
代码:
#include <cstdio> #include <algorithm> #define MAXN 100005 #define MOD 99999997 using namespace std; int n, a[MAXN], b[MAXN], ta[MAXN], tb[MAXN], c[MAXN], ans, tot[MAXN]; struct cmpa { bool operator () (int a,int b) { return (ta[a]<ta[b]); } } xa; struct cmpb { bool operator () (int a, int b) { return (tb[a] < tb[b]); } } xb; int lowbit(int o) { return o & -o; } void update(int o) { while (o <= n) tot[o]++, o += lowbit(o); } int getSum(int o) { int ans = 0; while (o) ans += tot[o], o -= lowbit(o); return ans; } int main() { freopen("match.in", "r", stdin); freopen("match.out", "w", stdout); scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%d", &ta[i]), a[i] = i; for (int i = 1; i <= n; i++) scanf("%d", &tb[i]), b[i] = i; sort(a + 1, a + n + 1, xa), sort(b + 1, b + n + 1, xb); for (int i = 1; i <= n; i++) c[b[i]] = a[i]; for (int i = 1; i <= n; i++) update(c[i]), (ans += (i - getSum(c[i]))) %= MOD; printf("%d", ans); return 0; }
③ truck 货车运输(最大生成树/SPFA+优化/最大生成树+倍增)
思路:30分算法直接SPFA维护最长路,我用的30分是Kruskal维护最大生成树,一条边一条边加进去进行判断。。。然而这道题做到60分的暴力也不难——就是把这两种30分算法综合一下(what...)。当且仅当所选择的边在最大生成树上的时候,可以得到最优解。故可以事先求出最大生成树,在最大生成树上进行SPFA!蠢的想不到啊卧槽。100分的话,感觉不是很难吧暂时没写,最大生成树+树上倍增LCA。
30分代码:
#include <cstdio> #include <algorithm> #define MAXN 10005 #define MAXM 50005 #define INF 1 << 30 using namespace std; int n, u, v, w, q, o; int s, t, set[MAXN], m; struct Edge { int u, v, w; }; Edge e[MAXN * 2]; struct Cmp { bool operator () (Edge a, Edge b) { return (a.w > b.w); } } x; void addEdge(int u, int v, int w) { o++, e[o] = (Edge) {u, v, w}; } int check(int x) { return (set[x] == x ? x : set[x] = check(set[x])); } int work() { int ans, get = 0; for (int i = 1; i <= m; i++) { if (check(s) == check(t)) { get = 1; break; } int c1 = check(e[i].u), c2 = check(e[i].v); if (c1 != c2) set[c1] = c2, ans = e[i].w; } return get ? ans : -1; } int main() { freopen("truck.in", "r", stdin); freopen("truck.out", "w", stdout); scanf("%d %d", &n, &m); for (int i = 1; i <= m; i++) scanf("%d %d %d", &u, &v, &w), addEdge(u, v, w); sort(e + 1, e + m + 1, x); scanf("%d", &q); while (q--) { scanf("%d %d", &s, &t); for (int i = 1; i <= n; i++) set[i] = i; printf("%d ", work()); } return 0; }
60分代码:
#include <cstdio> #include <string> #include <algorithm> using namespace std; #define MAXN 10005 #define MAXM 50005 #define INF 1 << 30 struct Tmp { int u, v, w; } te[MAXM]; struct Edge { int v, next, w; } e[MAXN]; struct Cmp { bool operator () (Tmp a, Tmp b) { return a.w > b.w; } } x; int n, m, t, u, v, w, o, head[MAXN], vis[MAXN], dis[MAXN], q[MAXN * 2], set[MAXN]; int check(int o) { return o == set[o] ? o : set[o] = check(set[o]); } void addEdge(int u, int v, int w) { o++, e[o] = (Edge) {v, head[u], w}, head[u] = o; } int SPFA(int x, int y) { int h = 1, t = 2; memset(vis, 0, sizeof(vis)), memset(dis, -1, sizeof(dis)); q[1] = x, vis[x] = 1, dis[x] = INF; while (h != t) { int o = q[h]; for (int x = head[o]; x; x = e[x].next) { int v = e[x].v; if (dis[v] < min(dis[o], e[x].w)) { dis[v] = min(dis[o], e[x].w); if (!vis[v]) vis[v] = 1, q[t] = v, t++; } } vis[o] = 0, h++; } return dis[y]; } int main() { freopen("truck.in", "r", stdin); freopen("truck.out", "w", stdout); scanf("%d %d", &n, &m); for (int i = 1; i <= m; i++) { scanf("%d %d %d", &u, &v, &w); te[i] = (Tmp) {u, v, w}; } sort(te + 1, te + m + 1, x); for (int i = 1; i <= n; i++) set[i] = i; for (int i = 1; i <= m; i++) { int u = te[i].u, v = te[i].v, w = te[i].w; int c1 = check(u), c2 = check(v); if (c1 != c2) set[c1] = c2, addEdge(u, v, w), addEdge(v, u, w); } scanf("%d", &t); for (int i = 1; i <= t; i++) scanf("%d %d", &u, &v), printf("%d ", SPFA(u, v)); return 0; }
⑤ flower 花匠(贪心/贪心/动态规划+优化)
思路:最想吐槽的一道题,。为什么正解会想到动态规划。。不是说不可做,这摆明了的可以贪心啊!虽然两年前甚至是一年前都无法很快的想到,但是一年之后的我把这道题当做新题再看一次的时候,实在是想不通为什么要去动态规划的路线。。所以我写了一个代码量极短的贪心。
代码:
#include <cstdio> #define MAXN 100005 int n, h[MAXN], t[2], o; int max(int a, int b) { return a > b ? a : b; } int main() { freopen("flower.in", "r", stdin); freopen("flower.out", "w", stdout); scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%d", &h[i]); for (int j = 0; j <= 1; j++, o = j) for (int i = 2; i <= n; i++) if (o ? (h[i] > h[i - 1]) : (h[i] < h[i - 1])) o ^= 1, t[o]++; printf("%d", max(t[0], t[1]) + 1); return 0; }
⑥ puzzle 华容道(BFS+少量优化?/BFS/BFS+SPFA)
思路:直接写了BFS,据说是60分,但是最后得了70分。
70分代码:
#include <cstdio> #include <cstring> #define MAXN 35 const int vx[4] = {0, 0, 1, -1}, vy[4] = {1, -1, 0, 0}; int n, m, t, a[MAXN][MAXN], vis[MAXN][MAXN][MAXN][MAXN]; int ex, ey, sx, sy, tx, ty; struct Queue { int x, y, ox, oy, d; } q[MAXN * MAXN * MAXN * MAXN]; int BFS() { int h = 1, t = 2; q[1] = (Queue) {ex, ey, sx, sy, 0}; while (h != t) { for (int i = 0; i <= 3; i++) { int nx = q[h].x + vx[i], ny = q[h].y + vy[i]; if (nx == q[h].ox && ny == q[h].oy) { q[t].ox = q[h].x, q[t].oy = q[h].y; if (q[t].ox == tx && q[t].oy == ty) return q[h].d + 1; } else q[t].ox = q[h].ox, q[t].oy = q[h].oy; if (!a[nx][ny] || vis[nx][ny][q[t].ox][q[t].oy]) continue; vis[nx][ny][q[t].ox][q[t].oy] = 1; q[t].x = nx, q[t].y = ny, q[t].d = q[h].d + 1; t++; } h++; } return -1; } int main() { freopen("puzzle.in", "r", stdin); freopen("puzzle.out", "w", stdout); scanf("%d %d %d", &n, &m, &t); for (int i = 1; i <= n; i++) for (int j = 1; j <= m; j++) scanf("%d", &a[i][j]); for (int i = 1; i <= t; i++) { memset(vis, 0, sizeof(vis)); scanf("%d %d %d %d %d %d", &ex, &ey, &sx, &sy, &tx, &ty); vis[ex][ey][sx][sy] = 1; printf("%d ", sx == tx && sy == ty ? 0 :BFS()); } return 0; }
6、NOIP2014
② link 联合权值(BFS/BFS/树形动态规划)
思路:现在来看还是NOIP2014的题最良心。。。直接根据点与点之间的关系找出所有距离为2的点对,最后再统计权值即可。记得开long long。
代码:
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; #define MAXN 200005 #define MOD 10007 #ifdef WIN32 #define lld "%I64d" #else #define lld "%lld" #endif typedef long long ll; ll h[MAXN], w[MAXN], tot[MAXN], n, u, v, o, ans, maxv; struct edge { ll v, next; } e[MAXN * 2]; void add(ll u, ll v) { o++, e[o] = (edge) {v, h[u]}, h[u] = o; } void work(ll x, ll fa) { ll sonv = 0, tmax = 0, vmax; for (ll o = h[x]; o; o = e[o].next) { ll v = e[o].v; sonv += w[v]; if (tmax < w[v]) tmax = w[v], vmax = v; } for (ll o = h[x]; o; o = e[o].next) { ll v = e[o].v; if (v == fa) continue; if (v != vmax) maxv = max(maxv, tmax * w[v]); tot[v] += w[fa] + sonv - w[v], work(v, x); maxv = max(maxv, w[v] * w[fa]); } } int main() { freopen("link.in", "r", stdin); freopen("link.out", "w", stdout); scanf(lld, &n); for (ll i = 1; i < n; i++) scanf(lld " " lld, &u, &v), add(u, v), add(v, u); for (ll i = 1; i <= n; i++) scanf(lld, &w[i]); work(1, 0); for (ll i = 1; i <= n; i++) (ans += w[i] * tot[i]) %= MOD; printf(lld " " lld, maxv, ans); return 0; }
③ bird 飞扬的小鸟(动态规划/记忆化搜索/动态规划)
思路:这个题搜索分高的有点过分啊(当然我也是受益者之一)。其实题目本身没有太多难度,无论是搜索还是记忆化搜索还是动态规划,最要注意的部分就是上界的特判。
代码:
#include <cstdio> #define MAXN 10005 #define MAXM 1005 #define INF 0x3f3f3f3f int n, m, k, x[MAXN], y[MAXN], u[MAXN], d[MAXN], f[MAXN][MAXM], ans = INF, cnt; int min(int a, int b) { return a < b ? a : b; } int main() { freopen("bird.in", "r", stdin); freopen("bird.out", "w", stdout); scanf("%d %d %d", &n, &m, &k); for (int i = 0; i < n; i++) scanf("%d %d", &x[i], &y[i]); for (int i = 0; i <= n; i++) u[i] = m + 1; for (int i = 1; i <= k; i++) { int o; scanf("%d", &o), scanf("%d %d", &d[o], &u[o]); } for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { f[i][j] = INF; if (j > x[i - 1]) f[i][j] = min(f[i][j], min(f[i - 1][j - x[i - 1]], f[i][j - x[i - 1]]) + 1); } for (int j = m - x[i - 1]; j <= m; j++) f[i][m] = min(f[i][m], min(f[i - 1][j], f[i][j]) + 1); for (int j = d[i] + 1; j <= u[i] - 1; j++) if (j + y[i - 1] <= m) f[i][j] = min(f[i][j], f[i - 1][j + y[i - 1]]); for (int j = 1; j <= d[i]; j++) f[i][j] = INF; for (int j = u[i]; j <= m; j++) f[i][j] = INF; int get = 0; for (int j = 1; j <= m ; j++) if (f[i][j] != INF) { get = 1; break; } if (!get) { printf("0 %d", cnt); return 0; } else if (u[i] != m + 1) cnt++; } for (int i = 1; i <= m; i++) ans = min(ans, f[n][i]); printf("1 %d", ans); return 0; }
⑤ road 寻找道路(搜索/搜索/搜索)
思路:来自day2的水题。正序逆序各对图进行一次扫描,用DFS/BFS/SPFA均可。
代码:
#include <cstdio> #include <cstring> #define MAXN 10005 #define MAXM 200005 #define INF 0x3f3f3f3f int n, m, u, v, st, en, head[2][MAXN], o[2], dep[MAXN], vis[MAXN]; struct edge { int v, next; } e[2][MAXM]; void add(int u, int v, int x) { o[x]++, e[x][o[x]] = (edge) {v, head[x][u]}, head[x][u] = o[x]; } void init() { freopen("road.in", "r", stdin); freopen("road.out", "w", stdout); scanf("%d %d", &n, &m); for (int i = 1; i <= m; i++) scanf("%d %d", &u, &v), add(u, v, 0), add(v, u, 1); scanf("%d %d", &st, &en); memset(dep, INF, sizeof(dep)); } void BFS1() { int q[MAXN], h = 1, t = 2; q[1] = en, vis[en] = 1; while (h != t) { int o = q[h]; for (int x = head[1][o]; x; x = e[1][x].next) { int v = e[1][x].v; if (vis[v]) continue; vis[v] = 1, q[t] = v, t++; } h++; } } void BFS2() { int q[MAXN], h = 1, t = 2; q[1] = st, dep[st] = 0; while (h != t) { int o = q[h], no = 0; for (int x = head[0][o]; x; x = e[0][x].next) { int v = e[0][x].v; if (!vis[v]) { no = 1; break; } } if (!no) for (int x = head[0][o]; x; x = e[0][x].next) { int v = e[0][x].v; if (dep[v] > dep[q[h]] + 1) q[t] = v, t++, dep[v] = dep[q[h]] + 1; } h++; } } int main() { init(), BFS1(), BFS2(); if (dep[en] != INF) printf("%d", dep[en]); else printf("-1"); return 0; }
⑥ equation 解方程(搜索/搜索/搜索+Hash+取模)
思路:30分从头搜到尾。。。50分是高精度吧,没时间写就没有写了。据说搜索+取模可以省去高精度直接AC?现在应该不是研究这个的时候了。。。我只写了30分的。
30分代码:
#include <cstdio> #define MAXN 105 int n, m, a[MAXN], tot = 0, ans[MAXN]; int main() { freopen("equation.in", "r", stdin); freopen("equation.out", "w", stdout); scanf("%d %d", &n, &m); for (int i = 0; i <= n; i++) scanf("%d", &a[i]); for (int i = 1; i <= m; i++) { int x = 1, o = 0; for (int j = 0; j <= n; j++) o += a[j] * x, x *= i; if (o == 0) ans[tot++] = i; } printf("%d ", tot); for (int i = 0; i < tot; i++) printf("%d ", ans[i]); return 0; }
7、NOIP2015
呵呵哒。你敢信我对这一年的题目什么印象都没有。。他们在那里讲信息传递的时候我一脸懵逼。确实一点都不想回忆这个,所以15年的我一道题都没有去做。
② message 信息传递
③ landlords 斗地主
⑤ substring 子串
⑥ transport 运输计划