zoukankan      html  css  js  c++  java
  • NOIP2010-2015后四题汇总

    1、前言

      正式开始的第一周的任务——把NOIP2010至NOIP2015的所有D1/2的T2/3写出暴力。共22题。

      暴力顾名思义,用简单粗暴的方式解题,不以正常的思路思考。能够较好的保证正确性,但是最大的问题在于效率。搞OI这么久,每次考试也经常纠结于暴力与正解之间,其实这两者概念上本来就没有明显的界限,是一组相对概念。

      下面尽可能的不提到正解,但是如果正解容易到我都能够轻松秒的话就还是说一下了。

      普通的DFS/BFS搜索是暴力,但暴力不局限于此。根据向总的话,记忆化搜索亦属于暴力,名字逼格这么高分数肯定也高一些。什么是记忆化搜索呢?

      记忆化搜索就是把我们之前搜索过的状态保存下来,在之后搜索再遇到这种状态时就可以避免重复搜索,直接调用上次搜索的结果即可。记忆化搜索适用于重复子结构较多的题目。

      这样看上去貌似好熟悉。。。是啊很像动态规划。。。

      我姑且把它理解为以DFS的形式来实现的动态规划吧,,,虽然向总始终说他不是动态规划。

    Tips:(我写的/暴力最佳方式/正解)

    2、NOIP2010

    ② tourist 乌龟棋(?/记忆化搜索/动态规划)

    思路:30分暴力直接强行DFS跑所有情况不多说了。考虑本题有一个特别的地方——重叠子结构很多,经常可能出现使用卡片个数相同但是顺序不同的情况。如果直接DFS的话,会浪费大量时间。由于总状态比较少,4张卡片每张只有至多40张,故可以把所有状态存入一个四维数组,f[a][b][c][d]表示在剩下a张1,b张2,c张3,d张4时可以获得的最大分数。在DFS时如果遇到之前已经遇到过的状态,进行比对,选取较大值转移。这样可以省去大量时间,也就是所谓的记忆化搜索。然而一旦你把f[a][b][c][d]的状态转移方程写出来就会发现。。和动态规划有什么区别呢。

    代码:

    #include <cstdio>
    #include <cstring>
    #define MAXN 355
    #define MAXM 45
    
    int n, m, w[MAXN], x, t[5], f[MAXM][MAXM][MAXM][MAXM];
    
    int max(int a, int b) {
        return a > b ? a : b;
    }
    
    int DFS(int o, int a, int b, int c, int d) {
        if (f[a][b][c][d] != -1) return f[a][b][c][d]; 
        f[a][b][c][d] = 0;
        if (a) f[a][b][c][d] = max(DFS(o + 1, a - 1, b, c, d), f[a][b][c][d]);
        if (b) f[a][b][c][d] = max(DFS(o + 2, a, b - 1, c, d), f[a][b][c][d]);
        if (c) f[a][b][c][d] = max(DFS(o + 3, a, b, c - 1, d), f[a][b][c][d]);
        if (d) f[a][b][c][d] = max(DFS(o + 4, a, b, c, d - 1), f[a][b][c][d]);
        f[a][b][c][d] += w[o];
        return f[a][b][c][d];
    }
    
    int main() {
        freopen("tortoise.in", "r", stdin);
        freopen("tortoise.out", "w", stdout);
        scanf("%d %d", &n, &m);
        for (int i = 1; i <= n; i++) scanf("%d", &w[i]);
        for (int i = 1; i <= m; i++) scanf("%d", &x), t[x]++;
        memset(f, -1, sizeof(f));
        printf("%d", DFS(1, t[1], t[2], t[3], t[4]));
        return 0;
    }

    ④ water 引水入城(?/BFS+枚举/BFS+动态规划)

    思路:对于30分,题目明确是不能满足要求。。(我竟然没意识到这个的重要性) 

    3、NOIP2011

    ② hotel 选择客栈(动态规划/枚举+前缀和/搜索+优化??)

    代码:

    #include <cstdio>
    #define MAXN 200005
    #define MAXK 65
    
    int n, k, p, s, c, v, a[MAXN], f[MAXK][MAXN];
    
    int main() {
        freopen("hotel.in", "r", stdin);
        freopen("hotel.out", "w", stdout);
        scanf("%d %d %d", &n, &k, &p);
        for (int i = 1; i <= n; i++) {
            scanf("%d %d", &c, &v);
            for (int j = 0; j < k; j++) f[j][i] = f[j][i - 1] + (j == c);
            s += (v <= p ? f[c][a[i] = i] - 1 : f[c][a[i] = a[i - 1]]);
        }
        printf("%d
    ", s);
        return 0;
    }

    ③ mayan Mayan游戏(搜索/搜索/搜索)

    思路:太长不写。恶心死了。

    ⑤ qc 聪明的质检员(?/二分答案/二分答案)

    思路:

    代码:

    ⑥ bus 观光公交(?/最短路/贪心或网络流)

    思路:

    代码:

    4、NOIP2012

    ② game 国王游戏(贪心/贪心/贪心)

    思路:这个贪心到底是如何证明的还是不清楚啊,以前做过所以知道怎么贪心。但是我还是耿直的写了直接根据一只手来贪心50分。感觉题目好鬼。对了记得写高精度。

    50分代码:

    #include <cstdio>
    #include <algorithm>
    using namespace std;
    
    #define MAXN 1005
    
    typedef long long ll;
    
    #ifdef WIN32
    #define lld "%I64d"
    #else
    #define lld "%lld"
    #endif
    
    ll n, x0, y0, o, ans;
    
    struct Mst {
        ll x, y;
    } a[MAXN];
    
    struct Cmp {
        bool operator () (Mst a, Mst b) {
            return a.y < b.y;
        }
    } x;
    
    int main() {
        freopen("game.in", "r", stdin);
        freopen("game.out", "w", stdout);
        scanf(lld lld lld, &n, &x0, &y0), o = x0;
        for (int i = 1; i <= n; i++) scanf(lld lld, &a[i].x, &a[i].y);
        sort(a + 1, a + n + 1, x);
        for (int i = 1; i <= n; i++) ans = max(ans, o / a[i].y), o *= a[i].x;
        printf(lld, ans);
        return 0;
    }

    ③ drive 开车旅行(?/枚举/倍增+set)

    思路:就枚举吧。

    ⑤ classroom 借教室(线段树/线段树/二分答案+差分)

    思路:30分模拟。可以很明显的看出来线段树是很适合这道题的,只要常数不是很大,100分到手(我也不知道怎么才会把常数写大)。

    代码:

    #include <cstdio>
    #define MAXN 1000005
    
    int n, m, c[MAXN], d[MAXN], x[MAXN], y[MAXN], get;
    
    struct Tree {
        int v, f;
    } t[MAXN * 4];
    
    int min(int a, int b) {
        return a < b ? a : b;
    }
    
    void build(int o, int l, int r) {
        if (l == r) {
            t[o].v = c[l];
            return;
        }
        int mid = (l + r) >> 1;
        build(o << 1, l, mid), build(o << 1 | 1, mid + 1, r);
        t[o].v = min(t[o << 1].v, t[o << 1 | 1].v);
    }
    
    void pushDown(int o) {
        t[o << 1].v -= t[o].f, t[o << 1 | 1].v -= t[o].f;
        t[o << 1].f += t[o].f, t[o << 1 | 1].f += t[o].f;
        t[o].f = 0;
    }
    
    void dec(int o, int l, int r, int ql, int qr, int v) {
        if (get) return;
        if (t[o].f) pushDown(o);
        if (l == ql && r == qr) {
            t[o].v -= v, t[o].f += v;
            if (t[o].v < 0) get = 1;
            return;
        }
        int mid = (l + r) >> 1;
        if (qr <= mid) dec(o << 1, l, mid, ql, qr, v);
        else if (ql >= mid + 1) dec(o << 1 | 1, mid + 1, r, ql, qr, v);
        else dec(o << 1, l, mid, ql, mid, v), dec(o << 1 | 1, mid + 1, r, mid + 1, qr, v);
        t[o].v = min(t[o << 1].v, t[o << 1 | 1].v);
    }
    
    int main() {
        freopen("classroom.in", "r", stdin);
        freopen("classroom.out", "w", stdout);
        scanf("%d %d", &n, &m);
        for (int i = 1; i <= n; i++) scanf("%d", &c[i]);
        build(1, 1, n);
        for (int i = 1; i <= m; i++) {
            scanf("%d %d %d", &d[i], &x[i], &y[i]);
            dec(1, 1, n, x[i], y[i], d[i]);
            if (get) {
                printf("-1
    %d", i);
                return 0;
            }
        }
        printf("0");
        return 0;
    }

    ⑥ blockade 疫情控制(枚举/枚举/二分答案+贪心+倍增)

    思路:20分枚举。

    代码:

    #include <cstdio>
    #include <algorithm>
    using namespace std;
    
    #define MAXN 10005
    
    int n, u, v, w, m, a[MAXN];
    int o, h[MAXN], vis[MAXN], res, b[MAXN], c[MAXN], btot, ctot;
    
    struct Edge {
        int v, next, w;
    } e[MAXN];
    
    void addEdge(int u, int v, int w) {
        o++, e[o] = (Edge) {v, h[u], w}, h[u] = o;
    }
    
    void DFS(int o, int fa) {
        for (int x = h[o]; x; x = e[x].next) {
            int v = e[x].v;
            if (v == fa) continue;
            if (a[v]) res += a[v];
            DFS(v, o);
        }
    }
    
    int work() {
        for (int x = h[1]; x; x = e[x].next) {
            int v = e[x].v;
            res = a[v], DFS(v, 1);
            if (!res) b[++btot] = e[x].w; 
            else if (res != 1) c[++ctot] = e[x].w * (res - 1);
        }
        sort(b + 1, b + btot + 1), sort(c + 1, c + ctot + 1);
        return b[1] + c[ctot];
    }
    
    
    
    int main() {
        freopen("blockade.in", "r", stdin);
        freopen("blockade.out", "w", stdout);
        scanf("%d", &n);
        for (int i = 1; i <= n - 1; i++)
            scanf("%d %d %d", &u, &v, &w), addEdge(u, v, w), addEdge(v, u, w);
        scanf("%d", &m);
        for (int i = 1; i <= m; i++) scanf("%d", &o), a[o]++;
        printf("%d", work());
        return 0;
    }

    5、NOIP2013

    ② match 火柴排队(树状数组+逆序对/枚举/树状数组或归并排序+逆序对)

    思路:考虑给出的式子在什么情况下可以获得最小值?两列数组分别最大对最大,次大对次大……最小对最小。为了达到这一局面,求逆序对就行了!(就行了。哦。)这个点确实考的非常偏啊,如果没有提前看过的话怎么做?

    这个插下逆序对的概念:

    对于一个包含N个非负整数的数组A[1..n],如果有i < j,且A[i] > A[j],则称(A[i] , A[j])为数组A中的一个逆序对。

    代码:

    #include <cstdio>
    #include <algorithm>
    
    #define MAXN 100005
    #define MOD 99999997
    using namespace std;
    
    int n, a[MAXN], b[MAXN], ta[MAXN], tb[MAXN], c[MAXN], ans, tot[MAXN];
    
    struct cmpa {
        bool operator () (int a,int b) {
            return (ta[a]<ta[b]);
        }
    } xa;
    
    struct cmpb {
        bool operator () (int a, int b) {
            return (tb[a] < tb[b]);
        }
    } xb;
    
    int lowbit(int o) { 
        return o & -o; 
    }
    
    void update(int o) {
        while (o <= n) tot[o]++, o += lowbit(o);
    }
    
    int getSum(int o) {
        int ans = 0;
        while (o) ans += tot[o], o -= lowbit(o);
        return ans;
    }
     
    int main() {
        freopen("match.in", "r", stdin);
        freopen("match.out", "w", stdout);
        scanf("%d", &n);
        for (int i = 1; i <= n; i++) scanf("%d", &ta[i]), a[i] = i;
        for (int i = 1; i <= n; i++) scanf("%d", &tb[i]), b[i] = i;
        sort(a + 1, a + n + 1, xa), sort(b + 1, b + n + 1, xb);
        for (int i = 1; i <= n; i++) c[b[i]] = a[i];
        for (int i = 1; i <= n; i++) update(c[i]), (ans += (i - getSum(c[i]))) %= MOD;
        printf("%d", ans);
        return 0;
    }

    ③ truck 货车运输(最大生成树/SPFA+优化/最大生成树+倍增)

    思路:30分算法直接SPFA维护最长路,我用的30分是Kruskal维护最大生成树,一条边一条边加进去进行判断。。。然而这道题做到60分的暴力也不难——就是把这两种30分算法综合一下(what...)。当且仅当所选择的边在最大生成树上的时候,可以得到最优解。故可以事先求出最大生成树,在最大生成树上进行SPFA!蠢的想不到啊卧槽。100分的话,感觉不是很难吧暂时没写,最大生成树+树上倍增LCA。

    30分代码:

    #include <cstdio>
    #include <algorithm>
    
    #define MAXN 10005
    #define MAXM 50005
    #define INF 1 << 30
    
    using namespace std;
    
    int n, u, v, w, q, o; 
    int s, t, set[MAXN], m;
    
    struct Edge {
        int u, v, w;
    };
    
    Edge e[MAXN * 2];
    
    struct Cmp {
        bool operator () (Edge a, Edge b) {
            return (a.w > b.w);
        }
    } x;
    
    void addEdge(int u, int v, int w) {
        o++, e[o] = (Edge) {u, v, w};
    }
    
    int check(int x) {
        return (set[x] == x ? x : set[x] = check(set[x]));
    } 
    
    int work() {
        int ans, get = 0;
        for (int i = 1; i <= m; i++) {
            if (check(s) == check(t)) {
                get = 1; 
                break; 
            }
            int c1 = check(e[i].u), c2 = check(e[i].v);
            if (c1 != c2) set[c1] = c2, ans = e[i].w;
        }
        return get ? ans : -1;
    }
    
    int main() {
        freopen("truck.in", "r", stdin);
        freopen("truck.out", "w", stdout);
        scanf("%d %d", &n, &m);
        for (int i = 1; i <= m; i++) scanf("%d %d %d", &u, &v, &w), addEdge(u, v, w);
        sort(e + 1, e + m + 1, x);
        scanf("%d", &q);
        while (q--) {
            scanf("%d %d", &s, &t);
            for (int i = 1; i <= n; i++) set[i] = i;
            printf("%d
    ", work());
        }
        return 0;
    }

    60分代码:

    #include <cstdio>
    #include <string>
    #include <algorithm>
    using namespace std;
    
    #define MAXN 10005
    #define MAXM 50005
    #define INF 1 << 30
    
    struct Tmp {
        int u, v, w;
    } te[MAXM];
    
    
    struct Edge {
        int v, next, w;
    } e[MAXN];
    
    struct Cmp {
        bool operator () (Tmp a, Tmp b) {
            return a.w > b.w;
        }
    } x;
    
    int n, m, t, u, v, w, o, head[MAXN], vis[MAXN], dis[MAXN], q[MAXN * 2], set[MAXN];
    
    int check(int o) {
        return o == set[o] ? o : set[o] = check(set[o]);
    }
    
    void addEdge(int u, int v, int w) {
        o++, e[o] = (Edge) {v, head[u], w}, head[u] = o;
    }
    
    int SPFA(int x, int y) {
        int h = 1, t = 2;
        memset(vis, 0, sizeof(vis)), memset(dis, -1, sizeof(dis));
        q[1] = x, vis[x] = 1, dis[x] = INF;
        while (h != t) {
            int o = q[h];
            for (int x = head[o]; x; x = e[x].next) {
                int v = e[x].v;
                if (dis[v] < min(dis[o], e[x].w)) {
                    dis[v] = min(dis[o], e[x].w);
                    if (!vis[v]) vis[v] = 1, q[t] = v, t++;    
                }
            }
            vis[o] = 0, h++;
        }
        return dis[y];
    }
    
    int main() {
        freopen("truck.in", "r", stdin);
        freopen("truck.out", "w", stdout);
        scanf("%d %d", &n, &m);
        for (int i = 1; i <= m; i++) {
            scanf("%d %d %d", &u, &v, &w);
            te[i] = (Tmp) {u, v, w};
        }
        sort(te + 1, te + m + 1, x);
        for (int i = 1; i <= n; i++) set[i] = i;
        for (int i = 1; i <= m; i++) {
            int u = te[i].u, v = te[i].v, w = te[i].w;
            int c1 = check(u), c2 = check(v);
            if (c1 != c2) set[c1] = c2, addEdge(u, v, w), addEdge(v, u, w);
        }
        scanf("%d", &t);
        for (int i = 1; i <= t; i++) scanf("%d %d", &u, &v), printf("%d
    ", SPFA(u, v));
        return 0;
    }

    ⑤ flower 花匠(贪心/贪心/动态规划+优化)

    思路:最想吐槽的一道题,。为什么正解会想到动态规划。。不是说不可做,这摆明了的可以贪心啊!虽然两年前甚至是一年前都无法很快的想到,但是一年之后的我把这道题当做新题再看一次的时候,实在是想不通为什么要去动态规划的路线。。所以我写了一个代码量极短的贪心。

    代码:

    #include <cstdio>
    #define MAXN 100005
    
    int n, h[MAXN], t[2], o;
    
    int max(int a, int b) {
        return a > b ? a : b;
    }
    
    int main() {
        freopen("flower.in", "r", stdin);
        freopen("flower.out", "w", stdout);
        scanf("%d", &n);
        for (int i = 1; i <= n; i++) scanf("%d", &h[i]);
        for (int j = 0; j <= 1; j++, o = j)
            for (int i = 2; i <= n; i++)
                if (o ? (h[i] > h[i - 1]) : (h[i] < h[i - 1])) o ^= 1, t[o]++;
        printf("%d", max(t[0], t[1]) + 1);
        return 0;
    }

    ⑥ puzzle 华容道(BFS+少量优化?/BFS/BFS+SPFA)

    思路:直接写了BFS,据说是60分,但是最后得了70分。

    70分代码:

    #include <cstdio>
    #include <cstring>
    #define MAXN 35
    
    const int vx[4] = {0, 0, 1, -1}, vy[4] = {1, -1, 0, 0};
    
    int n, m, t, a[MAXN][MAXN], vis[MAXN][MAXN][MAXN][MAXN];
    int ex, ey, sx, sy, tx, ty;
    
    struct Queue {
        int x, y, ox, oy, d;
    } q[MAXN * MAXN * MAXN * MAXN];
    
    int BFS() {
        int h = 1, t = 2;
        q[1] = (Queue) {ex, ey, sx, sy, 0};
        while (h != t) {
            for (int i = 0; i <= 3; i++) {
                int nx = q[h].x + vx[i], ny = q[h].y + vy[i];
                if (nx == q[h].ox && ny == q[h].oy) {
                    q[t].ox = q[h].x, q[t].oy = q[h].y;
                    if (q[t].ox == tx && q[t].oy == ty) return q[h].d + 1;
                }
                else q[t].ox = q[h].ox, q[t].oy = q[h].oy;
                if (!a[nx][ny] || vis[nx][ny][q[t].ox][q[t].oy]) continue;
                vis[nx][ny][q[t].ox][q[t].oy] = 1;
                q[t].x = nx, q[t].y = ny, q[t].d = q[h].d + 1;
                t++;
            }
            h++;
        }
        return -1;
    }
    
    int main() {
        freopen("puzzle.in", "r", stdin);
        freopen("puzzle.out", "w", stdout);
        scanf("%d %d %d", &n, &m, &t);
        for (int i = 1; i <= n; i++)
            for (int j = 1; j <= m; j++) scanf("%d", &a[i][j]);
        for (int i = 1; i <= t; i++) {
            memset(vis, 0, sizeof(vis));
            scanf("%d %d %d %d %d %d", &ex, &ey, &sx, &sy, &tx, &ty);
            vis[ex][ey][sx][sy] = 1;
            printf("%d
    ", sx == tx && sy == ty ? 0 :BFS());
        }
        return 0;
    }

    6、NOIP2014

    ② link 联合权值(BFS/BFS/树形动态规划)

    思路:现在来看还是NOIP2014的题最良心。。。直接根据点与点之间的关系找出所有距离为2的点对,最后再统计权值即可。记得开long long。

    代码:

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    
    #define MAXN 200005
    #define MOD 10007
    
    #ifdef WIN32
    #define lld "%I64d"
    #else
    #define lld "%lld"
    #endif
    
    typedef long long ll;
    
    ll h[MAXN], w[MAXN], tot[MAXN], n, u, v, o, ans, maxv;
    
    struct edge {
        ll v, next;
    } e[MAXN * 2];
    
    void add(ll u, ll v) {
        o++, e[o] = (edge) {v, h[u]}, h[u] = o; 
    }
    
    void work(ll x, ll fa) {
        ll sonv = 0, tmax = 0, vmax;
        for (ll o = h[x]; o; o = e[o].next) {
            ll v = e[o].v;
            sonv += w[v];
            if (tmax < w[v]) tmax = w[v], vmax = v; 
        }
        for (ll o = h[x]; o; o = e[o].next) {
            ll v = e[o].v;
            if (v == fa) continue;
            if (v != vmax) maxv = max(maxv, tmax * w[v]);
            tot[v] += w[fa] + sonv - w[v], work(v, x);
            maxv = max(maxv, w[v] * w[fa]);
        }
    }
    
    int main() {
        freopen("link.in", "r", stdin);
        freopen("link.out", "w", stdout);
        scanf(lld, &n);
        for (ll i = 1; i < n; i++) scanf(lld " " lld, &u, &v), add(u, v), add(v, u);
        for (ll i = 1; i <= n; i++) scanf(lld, &w[i]);
        work(1, 0);
        for (ll i = 1; i <= n; i++) (ans += w[i] * tot[i]) %= MOD;
        printf(lld " " lld, maxv, ans);
        return 0;
    }

    ③ bird 飞扬的小鸟(动态规划/记忆化搜索/动态规划)

    思路:这个题搜索分高的有点过分啊(当然我也是受益者之一)。其实题目本身没有太多难度,无论是搜索还是记忆化搜索还是动态规划,最要注意的部分就是上界的特判。

    代码:

    #include <cstdio>
    
    #define MAXN 10005
    #define MAXM 1005
    #define INF 0x3f3f3f3f
    
    int n, m, k, x[MAXN], y[MAXN], u[MAXN], d[MAXN], f[MAXN][MAXM], ans = INF, cnt;
    
    int min(int a, int b) {
        return a < b ? a : b;
    }
    
    int main() {
        freopen("bird.in", "r", stdin);
        freopen("bird.out", "w", stdout);
        scanf("%d %d %d", &n, &m, &k);
        for (int i = 0; i < n; i++) scanf("%d %d", &x[i], &y[i]);
        for (int i = 0; i <= n; i++) u[i] = m + 1;
        for (int i = 1; i <= k; i++) {
            int o;
            scanf("%d", &o), scanf("%d %d", &d[o], &u[o]);
        }
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= m; j++) {
                f[i][j] = INF;
                if (j > x[i - 1]) f[i][j] = min(f[i][j], min(f[i - 1][j - x[i - 1]], f[i][j - x[i - 1]]) + 1);
            }
            for (int j = m - x[i - 1]; j <= m; j++) f[i][m] = min(f[i][m], min(f[i - 1][j], f[i][j]) + 1);
            for (int j = d[i] + 1; j <= u[i] - 1; j++)
                if (j + y[i - 1] <= m) f[i][j] = min(f[i][j], f[i - 1][j + y[i - 1]]);
            for (int j = 1; j <= d[i]; j++) f[i][j] = INF;
            for (int j = u[i]; j <= m; j++) f[i][j] = INF;
            int get = 0;
            for (int j = 1; j <= m ; j++)
                if (f[i][j] != INF) {
                    get = 1;
                    break;
                }
            if (!get) {
                printf("0
    %d", cnt);
                return 0;
            }
            else if (u[i] != m + 1) cnt++;
        }
        for (int i = 1; i <= m; i++) ans = min(ans, f[n][i]);
        printf("1
    %d", ans);
        return 0;
    }

    ⑤ road 寻找道路(搜索/搜索/搜索)

    思路:来自day2的水题。正序逆序各对图进行一次扫描,用DFS/BFS/SPFA均可。

    代码:

    #include <cstdio>
    #include <cstring>
    
    #define MAXN 10005
    #define MAXM 200005
    #define INF 0x3f3f3f3f
    
    int n, m, u, v, st, en, head[2][MAXN], o[2], dep[MAXN], vis[MAXN];
    
    struct edge {
        int v, next;
    } e[2][MAXM];
    
    void add(int u, int v, int x) {
        o[x]++, e[x][o[x]] = (edge) {v, head[x][u]}, head[x][u] = o[x];
    }
    
    void init() {
        freopen("road.in", "r", stdin);
        freopen("road.out", "w", stdout);
        scanf("%d %d", &n, &m);
        for (int i = 1; i <= m; i++) scanf("%d %d", &u, &v), add(u, v, 0), add(v, u, 1);
        scanf("%d %d", &st, &en);
        memset(dep, INF, sizeof(dep));
    }
    
    void BFS1() {
        int q[MAXN], h = 1, t = 2;
        q[1] = en, vis[en] = 1;
        while (h != t) {
            int o = q[h];
            for (int x = head[1][o]; x; x = e[1][x].next) {
                int v = e[1][x].v;
                if (vis[v]) continue;
                vis[v] = 1, q[t] = v, t++;
            }
            h++;
        }
    }
    
    void BFS2() {
        int q[MAXN], h = 1, t = 2;
        q[1] = st, dep[st] = 0;
        while (h != t) {
            int o = q[h], no = 0;
            for (int x = head[0][o]; x; x = e[0][x].next) {
                int v = e[0][x].v;
                if (!vis[v]) { 
                    no = 1; 
                    break; 
                }
            }
            if (!no)
                for (int x = head[0][o]; x; x = e[0][x].next) {
                    int v = e[0][x].v;
                    if (dep[v] > dep[q[h]] + 1) q[t] = v, t++, dep[v] = dep[q[h]] + 1;
                }
            h++;
        }
    }
    
    int main() {
        init(), BFS1(), BFS2();
        if (dep[en] != INF) printf("%d", dep[en]); else printf("-1");
        return 0;
    }

    ⑥ equation 解方程(搜索/搜索/搜索+Hash+取模)

    思路:30分从头搜到尾。。。50分是高精度吧,没时间写就没有写了。据说搜索+取模可以省去高精度直接AC?现在应该不是研究这个的时候了。。。我只写了30分的。

    30分代码:

    #include <cstdio>
    #define MAXN 105
    
    int n, m, a[MAXN], tot = 0, ans[MAXN];
    
    int main() {
        freopen("equation.in", "r", stdin);
        freopen("equation.out", "w", stdout);
        scanf("%d %d", &n, &m);
        for (int i = 0; i <= n; i++) scanf("%d", &a[i]);
        for (int i = 1; i <= m; i++) {
            int x = 1, o = 0;
            for (int j = 0; j <= n; j++) o += a[j] * x, x *= i;
            if (o == 0) ans[tot++] = i;
        }
        printf("%d
    ", tot);
        for (int i = 0; i < tot; i++) printf("%d
    ", ans[i]);
        return 0;
    }    

    7、NOIP2015

    呵呵哒。你敢信我对这一年的题目什么印象都没有。。他们在那里讲信息传递的时候我一脸懵逼。确实一点都不想回忆这个,所以15年的我一道题都没有去做。

    ② message 信息传递

    ③ landlords 斗地主

    ⑤ substring 子串

    ⑥ transport 运输计划

  • 相关阅读:
    Vue数据绑定和响应式原理
    JavaScript实现MVVM之我就是想监测一个普通对象的变化
    缓存的理解
    理解promise 02
    线段与线段的交点
    线段与线段交点的推导公式
    promise你懂了吗?
    wx import require的理解
    webgl example1
    sublime2常用插件
  • 原文地址:https://www.cnblogs.com/jinkun113/p/6014018.html
Copyright © 2011-2022 走看看