zoukankan      html  css  js  c++  java
  • 基于Transformer的ViT、DETR、Deformable DETR原理详解

    自从Transformer出来以后,Transformer便开始在NLP领域一统江湖。而Transformer在CV领域反响平平,一度认为不适合CV领域,直到最近计算机视觉领域出来几篇Transformer文章,性能直逼CNN的SOTA,给予了计算机视觉领域新的想象空间。

    本文不拘泥于Transformer原理和细节实现(知乎有很多优质的Transformer解析文章,感兴趣的可以看看),着重于Transformer对计算机视觉领域的革新。

    首先简略回顾一下Transformer,然后介绍最近几篇计算机视觉领域的Transformer文章,其中ViT用于图像分类,DETRDeformable DETR用于目标检测。从这几篇可以看出,Transformer在计算机视觉领域的范式已经初具雏形,可以大致概括为:Embedding -> Transformer -> Head

    一些有趣的点写在最后~~

    Transformer

    Transformer详解


    http://jalammar.github.io/illustrated-transformer/


    下面以机器翻译为例子,简略介绍Transformer结构。

    1. Encoder-Decoder

    Transformer结构可以表示为Encoder和Decoder两个部分

    Encoder和Decoder主要由Self-Attention和Feed-Forward Network两个组件构成,Self-Attention由Scaled Dot-Product Attention和Multi-Head Attention两个组件构成。

    Scaled Dot-Product Attention公式:

    [公式]

    Multi-Head Attention公式:

    [公式]

    Feed-Forward Network公式:

    [公式]

    2. Positional Encoding

    如图所示,由于机器翻译任务跟输入单词的顺序有关,Transformer在编码输入单词的嵌入向量时引入了positional encoding,这样Transformer就能够区分出输入单词的位置了。

    引入positional encoding的公式为:

    [公式]

    [公式] 是位置, [公式] 是维数, [公式] 是输入单词的嵌入向量维度。

    3. Self-Attention

    3.1 Scaled Dot-Product Attention

    在Scaled Dot-Product Attention中,每个输入单词的嵌入向量分别通过3个矩阵[公式][公式]和 来分别得到Query向量([公式]),Key向量([公式])和Value向量([公式])。

    如图所示,Scaled Dot-Product Attention的计算过程可以分成7个步骤:

    1. 每个输入单词转化成嵌入向量。
    2. 根据嵌入向量得到[公式][公式][公式]三个向量。
    3. 通过向量计算 : 。
    4.  [公式] [公式]进行归一化,即除以[公式]
    5. 通过[公式]激活函数计算[公式]
    6. 点乘Value值[公式],得到每个输入向量的评分[公式]
    7. 所有输入向量的评分[公式]之和为[公式][公式]

    上述步骤的矩阵形式可以表示成:

    与Scaled Dot-Product Attention公式一致。

    3.2 Multi-Head Attention

    如图所示,Multi-Head Attention相当于h个不同Scaled Dot-Product Attention的集成,以h=8为例子,Multi-Head Attention步骤如下:

    1. 将数据 [公式] 分别输入到8个不同的Scaled Dot-Product Attention中,得到8个加权后的特征矩阵 [公式] 
    2. 将8个 [公式] 按列拼成一个大的特征矩阵。
    3. 特征矩阵经过一层全连接得到输出 [公式] 

    Scaled Dot-Product Attention和Multi-Head Attention都加入了short-cut机制。

    ViT

    ViT将Transformer巧妙的应用于图像分类任务,更少计算量下性能跟SOTA相当。

    Vision Transformer(ViT)将输入图片拆分成16x16个patches,每个patch做一次线性变换降维同时嵌入位置信息,然后送入Transformer,避免了像素级attention的运算。类似BERT[class]标记位的设置,ViT在Transformer输入序列前增加了一个额外可学习的[class]标记位,并且该位置的Transformer Encoder输出作为图像特征。

    [公式]

    其中[公式]为原图像分辨率,[公式]为每个图像patch的分辨率。[公式]为Transformer输入序列的长度。

    ViT舍弃了CNN的归纳偏好问题,更加有利于在超大规模数据上学习知识,即大规模训练优归纳偏好,在众多图像分类任务上直逼SOTA。

    DETR

    DETR使用set loss function作为监督信号来进行端到端训练,然后同时预测所有目标,其中set loss function使用bipartite matching算法将pred目标和gt目标匹配起来。直接将目标检测任务看成set prediction问题,使训练过程变的简洁,并且避免了anchor、NMS等复杂处理。

    DETR主要有两个部分:architecture和set prediction loss。

    1. Architecture

    DETR先用CNN将输入图像embedding成一个二维表征,然后将二维表征转换成一维表征并结合positional encoding一起送入encoder,decoder将少量固定数量的已学习的object queries(可以理解为positional embeddings)和encoder的输出作为输入。最后将decoder得到的每个output embdding传递到一个共享的前馈网络(FFN),该网络可以预测一个检测结果(包括类和边框)或着“没有目标”的类。

    1.1 Transformer

    1.1.1 Encoder

    将Backbone输出的feature map转换成一维表征,得到 特征图,然后结合positional encoding作为Encoder的输入。每个Encoder都由Multi-Head Self-Attention和FFN组成。

    和Transformer Encoder不同的是,因为Encoder具有位置不变性,DETR将positional encoding添加到每一个Multi-Head Self-Attention中,来保证目标检测的位置敏感性。

    1.1.2 Decoder

    因为Decoder也具有位置不变性,Decoder的[公式]个object query(可以理解为学习不同object的positional embedding)必须是不同,以便产生不同的结果,并且同时把它们添加到每一个Multi-Head Attention中。[公式]个object queries通过Decoder转换成一个output embedding,然后output embedding通过FFN独立解码出[公式]个预测结果,包含box和class。对输入embedding同时使用Self-Attention和Encoder-Decoder Attention,模型可以利用目标的相互关系来进行全局推理。

    和Transformer Decoder不同的是,DETR的每个Decoder并行输出[公式]个对象,Transformer Decoder使用的是自回归模型,串行输出[公式]个对象,每次只能预测一个输出序列的一个元素。

    1.1.3 FFN

    FFN由3层perceptron和一层linear projection组成。FFN预测出box的归一化中心坐标、长、宽和class。

    DETR预测的是固定数量的[公式]个box的集合,并且[公式]通常比实际目标数要大的多,所以使用一个额外的空类来表示预测得到的box不存在目标。

    2. Set prediction loss

    DETR模型训练的主要困难是如何根据gt衡量预测结果(类别、位置、数量)。DETR提出的loss函数可以产生pred和gt的最优双边匹配(确定pred和gt的一对一关系),然后优化loss。

     [公式] 表示为gt的集合, 表示为[公式]个预测结果的集合。假设[公式]大于图片目标数, [公式] 可以认为是用空类(无目标)填充的大小为[公式]的集合。搜索两个集合[公式]个元素[公式]的不同排列顺序,使得loss尽可能的小的排列顺序即为二分图最大匹配(Bipartite Matching),公式如下:

    [公式]

    其中[公式]表示pred和gt关于[公式]元素[公式]的匹配loss。其中二分图匹配通过匈牙利算法(Hungarian algorithm)得到。

    匹配loss同时考虑了pred class和pred box的准确性。每个gt的元素[公式]可以看成[公式][公式]表示class label(可能是空类) [公式]表示gt box,将元素[公式]二分图匹配指定的pred class表示为 [公式] ,pred box表示为[公式]

    第一步先找到一对一匹配的pred和gt,第二步再计算hungarian loss。

    hungarian loss公式如下:

    [公式]

    其中 结合了L1 loss和generalized IoU loss,公式如下:

    [公式]

    ViT和DETR两篇文章的实验和可视化分析很有启发性,感兴趣的可以仔细看看~~

    Deformable DETR

    从DETR看,还不足以赶上CNN,因为训练时间太久了,Deformable DETR的出现,让我对Transformer有了新的期待。

    Deformable DETR将DETR中的attention替换成Deformable Attention,使DETR范式的检测器更加高效,收敛速度加快10倍。

    Deformable DETR提出的Deformable Attention可以可以缓解DETR的收敛速度慢和复杂度高的问题。同时结合了deformable convolution的稀疏空间采样能力和transformer的关系建模能力。Deformable Attention可以考虑小的采样位置集作为一个pre-filter突出所有feature map的关键特征,并且可以自然地扩展到融合多尺度特征,并且Multi-scale Deformable Attention本身就可以在多尺度特征图之间进行交换信息,不需要FPN操作。

    1. Deformable Attention Module

    给定一个query元素(如输出句子中的目标词)和一组key元素(如输入句子的源词),Multi-Head Attention能够根据query-key pairs的相关性自适应的聚合key的信息。为了让模型关注来自不同表示子空间和不同位置的信息,对multi-head的信息进行加权聚合。其中[公式]表示query元素(特征表示为[公式]),[公式]表示key元素(特征表示为[公式]),[公式]是特征维度,[公式] [公式] 分别为[公式][公式]的集合。

    那么Transformer 的 Multi-Head Attention公式表示为:

    [公式]

    其中[公式]指定attention head,[公式][公式]是可学习参数,注意力权重[公式]并且归一化[公式],其中[公式]是可学习参数。为了能够分辨不同空间位置,[公式][公式]通常会引入positional embedding。

    对于DETR中的Transformer Encoder,query和key元素都是feature map中的像素。

    DETR 的 Multi-Head Attention 公式表示为:

    [公式]

    其中[公式]

    DETR主要有两个问题:需要更多的训练时间来收敛,对小目标的检测性能相对较差。本质上是因为Transfomer的Multi-Head Attention会对输入图片的所有空间位置进行计算。而Deformable DETR的Deformable Attention只关注参考点周围的一小部分关键采样点,为每个query分配少量固定数量的key,可以缓解收敛性和输入分辨率受限制的问题。

    给定一个输入feature map ,[公式]表示为query元素(特征表示为),二维参考点表示为[公式],Deformable DETR 的 Deformable Attention公式表示为:

    [公式]

    其中[公式]指定attention head,[公式]指定采样的key,[公式]表示采样key的总数([公式])。[公式], [公式] 分别表示第[公式]个采样点在第[公式]个attention head的采样偏移量和注意力权重。注意力权重[公式]在[0,1]的范围内,归一化[公式][公式]表示为无约束范围的二维实数。因为[公式]为分数,需要采用双线性插值方法计算[公式]

    2. Multi-scale Deformable Attention Module

    Deformable Attention可以很自然地扩展到多尺度的feature maps。[公式]表示为输入的多尺度feature maps,[公式] [公式] 表示为每个query元素[公式]的参考点 [公式] 的归一化坐标。Deformable DETR 的Multi-scale Deformable Attention公式表示为:

    [公式]

    其中[公式]指定attention head,[公式]指定输入特征层,[公式]指定采样的key,[公式]表示采样key的总数( [公式] )。[公式], [公式]分别表示第[公式]个采样点在第[公式]特征层的第[公式]个attention head的采样偏移量和注意力权重。注意力权重[公式]在[0,1]的范围内,归一化[公式]

    3. Deformable Transformer Encoder

    将DETR中所有的attention替换成multi-scale deformable attention。encoder的输入和输出都是具有相同分辨率的多尺度feature maps。Encoder从ResNet的[公式]中抽取多尺度feature maps[公式], ( [公式][公式]进行3×3 stride 2卷积得到)。

    在Encoder中使用multi-scale deformable attention,输出是和输入具有相同分辨率的多尺度feature maps。query和key都来自多尺度feature maps的像素。对于每个query像素,参考点是它本身。为了判断query像素源自哪个特征层,除了positional embedding外,还添加了一个scale-level embedding[公式],不同于positional embedding的固定编码, scale-level embedding随机初始化并且通过训练得到。

    4. Deformable Transformer Decoder

    Decoder中有cross-attention和self-attention两种注意力。这两种注意力的query元素都是object queries。在cross-attention中,object queries从feature maps中提取特征,而key元素是encoder输出的feature maps。在self-attention中,object queries之间相互作用,key元素也是object queries。因为Deformable Attention是用于key元素的feature maps特征提取的,所以decoder部分,deformable attention只替换cross-attention。

    因为multi-scale deformable attention提取参考点周围的图像特征,让检测头预测box相对参考点的偏移量,进一步降低了优化难度。

    复杂度分析

    假设query和key的数量分别为[公式][公式]([公式]),维度为[公式],key采样点数为[公式],图像的feature map大小为[公式],卷积核尺寸为[公式]

    Convolution复杂度

    • 为了保证输入和输出在第一个维度都相同,故需要对输入进行padding操作,因为这里kernel size为[公式](实际kernel的形状为[公式])。
    • 大小为[公式]的卷积核一次运算复杂度为[公式],一共做了[公式]次,故复杂度为[公式]
    • 为了保证第三个维度相等,故需要[公式]个卷积核,所以卷积操作的时间复杂度为[公式]

    Self-Attention复杂度

    [公式]

    • [公式]的计算复杂度为[公式]
    • 相似度计算[公式][公式][公式]运算,得到[公式]矩阵,复杂度为[公式]
    • [公式] 计算:对每行做 [公式] ,复杂度为[公式],则n行的复杂度为[公式]
    • 加权和:[公式][公式]运算,得到[公式]矩阵,复杂度为[公式]
    • 故最后self-attention的时间复杂度为[公式]

    Transformer

    Self-Attention的复杂度为[公式]

    ViT

    [公式]

    Self-Attention的复杂度为[公式]

    DETR

    [公式]

    Self-Attention的复杂度为[公式]

    Deformable DETR

    Self-Attention的复杂度为[公式]

    分析细节看原论文

    几个问题

    [公式]如何理解? 为什么不使用相同的[公式][公式]

    1. 从点乘的物理意义上讲,两个向量的点乘表示两个向量的相似度。

    2. [公式]的物理意义是一样的,都表示同一个句子中不同token组成的矩阵。矩阵中的每一行,是表示一个token的word embedding向量。假设一个句子“Hello, how are you?”长度是6,embedding维度是300,那么[公式]都是(6,300)的矩阵。

    所以[公式][公式]的点乘可以理解为计算一个句子中每个token相对于句子中其他token的相似度,这个相似度可以理解为attetnion score,关注度得分。虽然有了attention score矩阵,但是这个矩阵是经过各种计算后得到的,已经很难表示原来的句子了,而[公式]还代表着原来的句子,所以可以将attention score矩阵与[公式]相乘,得到的是一个加权后的结果。

    经过上面的解释,我们知道[公式][公式]的点乘是为了得到一个attention score 矩阵,用来对[公式]进行提炼。[公式][公式]使用不同的[公式], [公式]来计算,可以理解为是在不同空间上的投影。正因为有了这种不同空间的投影,增加了表达能力,这样计算得到的attention score矩阵的泛化能力更高。这里解释下我理解的泛化能力,因为[公式][公式]使用了不同的[公式], [公式]来计算,得到的也是两个完全不同的矩阵,所以表达能力更强。但是如果不用[公式],直接拿[公式][公式]点乘的话,attention score 矩阵是一个对称矩阵,所以泛化能力很差,这个矩阵对[公式]进行提炼,效果会变差。


    如何Position Embedding更好?

    目前还是一个开放问题,知乎上有一些优质的讨论,详细分析可以看链接文章


    如何理解Transformer论文中的positional encoding,和三角函数有什么关系?
    Wang:CNN是怎么学到图片内的绝对位置信息的?


    ViT为什么要增加一个[CLS]标志位? 为什么将[CLS]标志位对应的向量作为整个序列的语义表示?

    和BERT相类似,ViT在序列前添加一个可学习的[CLS]标志位。以BERT为例,BERT在第一句前添加一个[CLS]标志位,最后一层该标志位对应的向量可以作为整句话的语义表示,从而用于下游的分类任务等。

    将[CLS]标志位对应的向量作为整个文本的语义表示,是因为与文本中已有的其它词相比,这个无明显语义信息的符号会更“公平”地融合文本中各个词的语义信息,从而更好的表示整句话的语义。


    归纳偏好是什么?

    归纳偏置在机器学习中是一种很微妙的概念:在机器学习中,很多学习算法经常会对学习的问题做一些假设,这些假设就称为归纳偏好(Inductive Bias)。归纳偏置可以理解为,从现实生活中观察到的现象中归纳出一定的规则(heuristics),然后对模型做一定的约束,从而可以起到“模型选择”的作用,即从假设空间中选择出更符合现实规则的模型。可以把归纳偏好理解为贝叶斯学习中的“先验”。

    在深度学习中,也使用了归纳偏好。在CNN中,假设特征具有局部性(Locality)的特点,即把相邻的一些特征融合到一起,会更容易得到“解”;在RNN中,假设每一时刻的计算依赖于历史计算结果;还有attention机制,也是从人的直觉、生活经验归纳得到的规则。

    而Transformer可以避免CNN的局部性归纳偏好问题。举一个DETR中的例子。

    训练集中没有超过13只长颈鹿的图像,DETR实验中创建了一个合成的图像来验证DETR的泛化能力,DERT可以完全找到合成的全部24只长颈鹿。这证实了DETR避免了CNN的归纳偏好问题。


    如何理解Inductive bias?


    二分图匹配? 匈牙利算法?

    给定一个二分图G,在G的一个子图M中,M的边集{E}中的任意两条边都不依附于同一个顶点,则称M是一个匹配。求二分图最大匹配可以用匈牙利算法。


    详细分析可以看链接文章

    https://liam.page/2016/04/03/Hungarian-algorithm-in-the-maximum-matching-problem-of-bigraph/

    ZihaoZhao:带你入门多目标跟踪(三)匈牙利算法&KM算法


    BETR的positional embedding、object queries和slot三者之间有何关系?

    DETR可视化decoder预测得到的20个slot。可以观察到每个slot学习到了特定区域的尺度大小。Object queries从这个角度看,其实有点像Faster-RCNN等目标检测器的anchor,结合encoder的positional embedding信息让每个slot往学习到的特定区域去寻找目标。


    Transformer相比于CNN的优缺点?

    优点:

    Transformer关注全局信息,能建模更加长距离的依赖关系,而CNN关注局部信息,全局信息的捕捉能力弱。

    Transformer避免了CNN中存在的归纳偏好问题。

    缺点:

    Transformer复杂度比CNN高,但是ViT和Deformable DETR给出了一些解决方法来降低Transformer的复杂度。

    Deformable detr中值得注意的几个地方:

    1. DeformableTransformer 中在不使用two_stage的条件下提供的reference_points是由nn.Embedding经过线性变化得到的,值得注意的是这个·reference_points·直接参与了loss的计算,也就是说这个分支上对self.reference_points层进行了训练。
    2. DeformableTransformer中使用two_stage的条件下在每个位置上都生成了proposal,然后选择topk个proposal作为query的reference_point,但是可以发现这里的topk 进行了detach,并不会传递从decoder传来的梯度误差。
    3. DeformableTransformer中使用two_stage的条件会在encoder的输出层的每个位置提供一个anchor,对于多尺度而言,提供了不同尺度的anchor。这里有个注意的是此时的query数量非常大,这会导致两个问题:第一,正负样本会很不均衡;第二,使用matcher分配gt给proposal会导致分配较慢,且密集proposal上进行一一配对会导致训练不稳定,较难收敛。
    4. DeformableTransformerDecoder在 不用return_intermediate时的输出需要进行unsqueeze,否则在detector中调用时会有维度问题。
    5. deformable_detrDeformableDETR的定义中, 在使用refine技术时,class_embed、bbox_embed是不共享参数的, 而不使用refine技术时,每层的class_embed, bbox_embed是参数共享的,使用nn.ModuleList主要是为了forward中推理代码的统一。

    总结

    Transformer给图像分类和目标检测方向带来了巨大革新,分割、跟踪、视频等方向也不远了吧

    NLP和CV的关系变的越来越有趣了,虽然争议很大,但是试想一下,NLP和CV两个领域能用一种范式来表达,该有多可怕,未来图像和文字是不是可以随心所欲的转来转去?可感知可推理的强人工智能是不是不远了?(想想就好)

    向着NLP和CV的统一前进


    Reference

    [1]Attention Is All You Need

    [2]An Image is Worth 16*16 Words: Transformers for Image Recognition at Scale

    [3]End-to-End Object Detection with Transformers

    [4]Deformable DETR: Deformable Transformers for End-to-End Object Detection


    https://www.jianshu.com/p/408ec5dfb37f

    欢迎转载,转载请保留页面地址。帮助到你的请点个推荐。

  • 相关阅读:
    LeetCode: Reverse Linked List
    DataBase: MySQL在.NET中的应用
    DataBase: LeetCode
    DirectShow+VS2010+Win7配置说明
    MathType应用:批量改变公式格式
    $LaTeX$笔记:首字下沉
    Latex学习笔记-序
    反思--技术博客的写作应该是怎样的?
    用Latex写学术论文:作者(Author)&摘要(Abstract)
    用Latex写学术论文: IEEE Latex模板和文档设置(documentclass)
  • 原文地址:https://www.cnblogs.com/jins-note/p/14815511.html
Copyright © 2011-2022 走看看