zoukankan      html  css  js  c++  java
  • 水库抽样Reservoir Sampling(蓄水池问题)

     

    知识复习

    空间亚线性算法:由于大数据算法中涉及到的数据是海量的,数据难以放入内存计算,所以一种常用的处理办法是不对全部数据进行计算,而只向内存里放入小部分数据,仅使用内存中的小部分数据,就可以得到一个有质量保证的结果。

    数据流算法:是指数据源源不断地到来,根据到来的数据返回相应的部分结果。适用于两种情况:第一、数据量非常大仅能扫描一次时,可以把数据看成数据流,把扫描看成数据到来。第二、数据更新非常快,不能把所有数据都保存下来再计算结果,此时可以把数据看成是一个数据流。

    在一些情况下,空间亚线性算法也叫数据流算法。


    水库抽样(海量数据随机抽样问题)(蓄水池问题)

    输入:一组数据,其大小未知

    输出:这组数据的k个均匀抽样

    要求:
    仅扫描数据一次。
    空间复杂度为O(K)。空间复杂度与整个数据量无关,只与抽样大小有关。
    扫描到数据的前n 个数据时(n>k),保存当前已扫描数据的k个均匀抽样。

    问题可以理解为:蓄水池(水库)的容量为k,对于n(n>k)个元素,如果第i个元素(i从1逐渐递增至n)以k/i的概率决定是否将它放入蓄水池,当i=n时,蓄水池中存放的是n个元素的均匀抽样,每个数字最终被存在数组中的概率相等,为k/n。见下面的证明

    水库抽样算法描述

     

    1、申请一个长度为k的数组A保存抽样。
    2、保存首先接收到的k个元素
    3、当接收到第i个新元素t时,以k/i的概率随机替换A中的元素(即生成[1,i]间随机数j,若j<=k,则以t替换A[j])

    Init : a reservoir with the size: k
     
    for i= k+1 to N
     
        M=random(1, i);
     
        if( M < k)
     
         SWAP the Mth value and ith value
     
    end for 
    

      

     
     

    证明一     

    当接收到第i个新元素t时,以k/i的概率保存在水库中,所以在接收第i+1个数时,第i个数还能保存在水库当中的概率是1-1/(i+1),因为在接收到第i+1个数时要以k/(i+1)的概率随机替换,而第i个数被选中的概率是1/k,它们相乘即为1/(i+1)。1/(i+1)为第i个元素被换出水库的概率,所以1-1/(i+1)就是在接收第i+1个元素时第i个元素在数组中的概率。同理,在接收第i+2个元素时,第i个元素让然保留在水库中的概率为1-1/(i+2)。以此类推,当接收第n个元素时,第i个元素保存在水库中的概率为1-1/n。只有这些事件都放生了,最终第i个元素才能保留在水库当中。因此第i个元素最终被保留在水库抽样当中的概率,就是这些事件的概率的乘积,即

     

    证明二

     

    (1)第一步初始化。出现在水库中的前k个元素,直接保存在数组A中。前k个数被选中的概率都是一致的,都是1。

    (2)第二步。在处理第k+1个元素时分两种情况:

    情况1:第k+1个元素未被选中,数组中没有元素被替换;此时,数组中每个元素的出现概率肯定是一样的,这很显然。但具体是多少呢?就是第k+1个元素未被选中的概率:1-P(第k+1个元素被选中)=1-k/(k+1)=1/(k+1)。(由于第k+1个元素被选中的概率是k/(k+1)(根据公式k/i))

    情况2:第k+1个元素被选中,数组中某个元素被第k+1个元素替换掉。第k+1个元素被选中的概率是k/(k+1)(根据公式k/i),所以这个新元素在水库中出现的概率就一定是k/(k+1)(不管它替换掉哪个元素)。下面来看水库中原有元素最终还能留在水库中的概率,水库中原有数据被替换的几率都相等为1/k。水库中任意一个元素被替换掉的概率是:(k/k+1)*(1/k)=1/(k+1),意即首先要第k+1个元素被选中,然后该元素在k个元素中被选中。那它未被替换的概率就是1-1/(k+1)=k/(k+1)。可以看出来,旧元素和新元素出现的概率是相等的。

    (3)第k+1之后面每个元素都重复第二步,即第i (i>k+1)个元素以k/i的概率决定是否将它放入蓄水池,最终所有元素出现在水库中的概率相等。
     
     



  • 相关阅读:
    LeetCode 769. Max Chunks To Make Sorted
    LeetCode 845. Longest Mountain in Array
    LeetCode 1059. All Paths from Source Lead to Destination
    1129. Shortest Path with Alternating Colors
    LeetCode 785. Is Graph Bipartite?
    LeetCode 802. Find Eventual Safe States
    LeetCode 1043. Partition Array for Maximum Sum
    LeetCode 841. Keys and Rooms
    LeetCode 1061. Lexicographically Smallest Equivalent String
    LeetCode 1102. Path With Maximum Minimum Value
  • 原文地址:https://www.cnblogs.com/jins-note/p/9573679.html
Copyright © 2011-2022 走看看