zoukankan      html  css  js  c++  java
  • 数据结构之DFS与BFS实现

    本文主要包括以下内容

    1. 邻接矩阵实现无向图的BFS与DFS
    2. 邻接表实现无向图的BFS与DFS

    理论介绍

    深度优先搜索介绍

    图的深度优先搜索(Depth First Search),和树的先序遍历比较类似。

    它的思想:假设初始状态是图中所有顶点均未被访问,则从某个顶点v出发,首先访问该顶点,然后依次从它的各个未被访问的邻接点出发深度优先搜索遍历图,直至图中所有和v有路径相通的顶点都被访问到。 若此时尚有其他顶点未被访问到,则另选一个未被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。

    显然,深度优先搜索是一个递归的过程。

    广度优先搜索介绍

    广度优先搜索算法(Breadth First Search),又称为”宽度优先搜索”或”横向优先搜索”,简称BFS。

    它的思想是:从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使得“先被访问的顶点的邻接点先于后被访问的顶点的邻接点被访问,直至图中所有已被访问的顶点的邻接点都被访问到。如果此时图中尚有顶点未被访问,则需要另选一个未曾被访问过的顶点作为新的起始点,重复上述过程,直至图中所有顶点都被访问到为止。

    换句话说,广度优先搜索遍历图的过程是以v为起点,由近至远,依次访问和v有路径相通且路径长度为1,2…的顶点。

    邻接矩阵实现无向图的BFS与DFS

    /**
     * C++: 邻接矩阵表示的"无向图(Matrix Undirected Graph)"
     *
     * @author skywang
     * @date 2014/04/19
     */
    
    #include <iomanip>
    #include <iostream>
    #include <vector>
    using namespace std;
    
    #define MAX 100
    class MatrixUDG {
        private:
            char mVexs[MAX];    // 顶点集合
            int mVexNum;             // 顶点数
            int mEdgNum;             // 边数
            int mMatrix[MAX][MAX];   // 邻接矩阵
    
        public:
            // 创建图(自己输入数据)
            MatrixUDG();
            // 创建图(用已提供的矩阵)
            MatrixUDG(char vexs[], int vlen, char edges[][2], int elen);
            ~MatrixUDG();
    
            // 深度优先搜索遍历图
            void DFS();
            // 广度优先搜索(类似于树的层次遍历)
            void BFS();
            // 打印矩阵队列图
            void print();
    
        private:
            // 读取一个输入字符
            char readChar();
            // 返回ch在mMatrix矩阵中的位置
            int getPosition(char ch);
            // 返回顶点v的第一个邻接顶点的索引,失败则返回-1
            int firstVertex(int v);
            // 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1
            int nextVertex(int v, int w);
            // 深度优先搜索遍历图的递归实现
            void DFS(int i, int *visited);
    
    };
    
    /* 
     * 创建图(自己输入数据)
     */
    MatrixUDG::MatrixUDG()
    {
        char c1, c2;
        int i, p1, p2;
    
        // 输入"顶点数"和"边数"
        cout << "input vertex number: ";
        cin >> mVexNum;
        cout << "input edge number: ";
        cin >> mEdgNum;
        if ( mVexNum < 1 || mEdgNum < 1 || (mEdgNum > (mVexNum * (mVexNum-1))))
        {
            cout << "input error: invalid parameters!" << endl;
            return ;
        }
    
        // 初始化"顶点"
        for (i = 0; i < mVexNum; i++)
        {
            cout << "vertex(" << i << "): ";
            mVexs[i] = readChar();
        }
    
        // 初始化"边"
        for (i = 0; i < mEdgNum; i++)
        {
            // 读取边的起始顶点和结束顶点
            cout << "edge(" << i << "): ";
            c1 = readChar();
            c2 = readChar();
    
            p1 = getPosition(c1);
            p2 = getPosition(c2);
            if (p1==-1 || p2==-1)
            {
                cout << "input error: invalid edge!" << endl;
                return ;
            }
    
            mMatrix[p1][p2] = 1;
            mMatrix[p2][p1] = 1;
        }
    }
    
    /*
     * 创建图(用已提供的矩阵)
     *
     * 参数说明:
     *     vexs  -- 顶点数组
     *     vlen  -- 顶点数组的长度
     *     edges -- 边数组
     *     elen  -- 边数组的长度
     */
    MatrixUDG::MatrixUDG(char vexs[], int vlen, char edges[][2], int elen)
    {
        int i, p1, p2;
    
        // 初始化"顶点数"和"边数"
        mVexNum = vlen;
        mEdgNum = elen;
        // 初始化"顶点"
        for (i = 0; i < mVexNum; i++)
            mVexs[i] = vexs[i];
    
        // 初始化"边"
        for (i = 0; i < mEdgNum; i++)
        {
            // 读取边的起始顶点和结束顶点
            p1 = getPosition(edges[i][0]);
            p2 = getPosition(edges[i][1]);
    
            mMatrix[p1][p2] = 1;
            mMatrix[p2][p1] = 1;
        }
    }
    
    /* 
     * 析构函数
     */
    MatrixUDG::~MatrixUDG() 
    {
    }
    
    /*
     * 返回ch在mMatrix矩阵中的位置
     */
    int MatrixUDG::getPosition(char ch)
    {
        int i;
        for(i=0; i<mVexNum; i++)
            if(mVexs[i]==ch)
                return i;
        return -1;
    }
    
    /*
     * 读取一个输入字符
     */
    char MatrixUDG::readChar()
    {
        char ch;
    
        do {
            cin >> ch;
        } while(!((ch>='a'&&ch<='z') || (ch>='A'&&ch<='Z')));
    
        return ch;
    }
    
    
    /*
     * 返回顶点v的第一个邻接顶点的索引,失败则返回-1
     */
    int MatrixUDG::firstVertex(int v)
    {
        int i;
    
        if (v<0 || v>(mVexNum-1))
            return -1;
    
        for (i = 0; i < mVexNum; i++)
            if (mMatrix[v][i] == 1)
                return i;
    
        return -1;
    }
    
    /*
     * 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1
     */
    int MatrixUDG::nextVertex(int v, int w)
    {
        int i;
    
        if (v<0 || v>(mVexNum-1) || w<0 || w>(mVexNum-1))
            return -1;
    
        for (i = w + 1; i < mVexNum; i++)
            if (mMatrix[v][i] == 1)
                return i;
    
        return -1;
    }
    
    /*
     * 深度优先搜索遍历图的递归实现
     */
    void MatrixUDG::DFS(int i, int *visited)
    {
        int w;
    
        visited[i] = 1;
        cout << mVexs[i] << " ";
        // 遍历该顶点的所有邻接顶点。若是没有访问过,那么继续往下走
        for (w = firstVertex(i); w >= 0; w = nextVertex(i, w))
        {
            if (!visited[w])
                DFS(w, visited);
        }
    
    }
    
    /*
     * 深度优先搜索遍历图
     */
    void MatrixUDG::DFS()
    {
        int i;
        int visited[MAX];       // 顶点访问标记
    
        // 初始化所有顶点都没有被访问
        for (i = 0; i < mVexNum; i++)
            visited[i] = 0;
    
        cout << "DFS: ";
        for (i = 0; i < mVexNum; i++)
        {
            //printf("
    == LOOP(%d)
    ", i);
            if (!visited[i])
                DFS(i, visited);
        }
        cout << endl;
    }
    
    /*
     * 广度优先搜索(类似于树的层次遍历)
     */
    void MatrixUDG::BFS()
    {
        int head = 0;
        int rear = 0;
        int queue[MAX];     // 辅组队列
        int visited[MAX];   // 顶点访问标记
        int i, j, k;
    
        for (i = 0; i < mVexNum; i++)
            visited[i] = 0;
    
        cout << "BFS: ";
        for (i = 0; i < mVexNum; i++)
        {
            if (!visited[i])
            {
                visited[i] = 1;
                cout << mVexs[i] << " ";
                queue[rear++] = i;  // 入队列
            }
            while (head != rear) 
            {
                j = queue[head++];  // 出队列
                for (k = firstVertex(j); k >= 0; k = nextVertex(j, k)) //k是为访问的邻接顶点
                {
                    if (!visited[k])
                    {
                        visited[k] = 1;
                        cout << mVexs[k] << " ";
                        queue[rear++] = k;
                    }
                }
            }
        }
        cout << endl;
    }
    
    /*
     * 打印矩阵队列图
     */
    void MatrixUDG::print()
    {
        int i,j;
    
        cout << "Martix Graph:" << endl;
        for (i = 0; i < mVexNum; i++)
        {
            for (j = 0; j < mVexNum; j++)
                cout << mMatrix[i][j] << " ";
            cout << endl;
        }
    }
    
    
    int main()
    {
        char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        char edges[][2] = {
            {'A', 'C'}, 
            {'A', 'D'}, 
            {'A', 'F'}, 
            {'B', 'C'}, 
            {'C', 'D'}, 
            {'E', 'G'}, 
            {'F', 'G'}};
        int vlen = sizeof(vexs)/sizeof(vexs[0]);
        int elen = sizeof(edges)/sizeof(edges[0]);
        MatrixUDG* pG;
    
        // 自定义"图"(输入矩阵队列)
        //pG = new MatrixUDG();
        // 采用已有的"图"
        pG = new MatrixUDG(vexs, vlen, edges, elen);
    
        pG->print();   // 打印图
        pG->DFS();     // 深度优先遍历
        pG->BFS();     // 广度优先遍历
    
        return 0;
    }

    邻接表实现无向图的BFS与DFS

    /**
     * C++: 邻接表表示的"无向图(List Undirected Graph)"
     *
     * @author skywang
     * @date 2014/04/19
     */
    
    #include <iomanip>
    #include <iostream>
    #include <vector>
    using namespace std;
    
    #define MAX 100
    // 邻接表
    class ListUDG
    {
        private: // 内部类
            // 邻接表中表对应的链表的顶点
            class ENode
            {
                public:
                    int ivex;           // 该边所指向的顶点的位置
                    ENode *nextEdge;    // 指向下一条弧的指针
            };
    
            // 邻接表中表的顶点
            class VNode
            {
                public:
                    char data;          // 顶点信息
                    ENode *firstEdge;   // 指向第一条依附该顶点的弧
            };
    
        private: // 私有成员
            int mVexNum;             // 图的顶点的数目
            int mEdgNum;             // 图的边的数目
            VNode mVexs[MAX];
    
        public:
            // 创建邻接表对应的图(自己输入)
            ListUDG();
            // 创建邻接表对应的图(用已提供的数据)
            ListUDG(char vexs[], int vlen, char edges[][2], int elen);
            ~ListUDG();
    
            // 深度优先搜索遍历图
            void DFS();
            // 广度优先搜索(类似于树的层次遍历)
            void BFS();
            // 打印邻接表图
            void print();
    
        private:
            // 读取一个输入字符
            char readChar();
            // 返回ch的位置
            int getPosition(char ch);
            // 深度优先搜索遍历图的递归实现
            void DFS(int i, int *visited);
            // 将node节点链接到list的最后
            void linkLast(ENode *list, ENode *node);
    };
    
    /*
     * 创建邻接表对应的图(自己输入)
     */
    ListUDG::ListUDG()
    {
        char c1, c2;
        int v, e;
        int i, p1, p2;
        ENode *node1, *node2;
    
        // 输入"顶点数"和"边数"
        cout << "input vertex number: ";
        cin >> mVexNum;
        cout << "input edge number: ";
        cin >> mEdgNum;
        if ( mVexNum < 1 || mEdgNum < 1 || (mEdgNum > (mVexNum * (mVexNum-1))))
        {
            cout << "input error: invalid parameters!" << endl;
            return ;
        }
    
        // 初始化"邻接表"的顶点
        for(i=0; i<mVexNum; i++)
        {
            cout << "vertex(" << i << "): ";
            mVexs[i].data = readChar();
            mVexs[i].firstEdge = NULL;
        }
    
        // 初始化"邻接表"的边
        for(i=0; i<mEdgNum; i++)
        {
            // 读取边的起始顶点和结束顶点
            cout << "edge(" << i << "): ";
            c1 = readChar();
            c2 = readChar();
    
            p1 = getPosition(c1);
            p2 = getPosition(c2);
            // 初始化node1
            node1 = new ENode();
            node1->ivex = p2;
            // 将node1链接到"p1所在链表的末尾"
            if(mVexs[p1].firstEdge == NULL)
              mVexs[p1].firstEdge = node1;
            else
                linkLast(mVexs[p1].firstEdge, node1);
            // 初始化node2
            node2 = new ENode();
            node2->ivex = p1;
            // 将node2链接到"p2所在链表的末尾"
            if(mVexs[p2].firstEdge == NULL)
              mVexs[p2].firstEdge = node2;
            else
                linkLast(mVexs[p2].firstEdge, node2);
        }
    }
    
    /*
     * 创建邻接表对应的图(用已提供的数据)
     */
    ListUDG::ListUDG(char vexs[], int vlen, char edges[][2], int elen)
    {
        char c1, c2;
        int i, p1, p2;
        ENode *node1, *node2;
    
        // 初始化"顶点数"和"边数"
        mVexNum = vlen;
        mEdgNum = elen;
        // 初始化"邻接表"的顶点
        for(i=0; i<mVexNum; i++)
        {
            mVexs[i].data = vexs[i];
            mVexs[i].firstEdge = NULL;
        }
    
        // 初始化"邻接表"的边
        for(i=0; i<mEdgNum; i++)
        {
            // 读取边的起始顶点和结束顶点
            c1 = edges[i][0];
            c2 = edges[i][1];
    
            p1 = getPosition(c1);
            p2 = getPosition(c2);
            // 初始化node1
            node1 = new ENode();
            node1->ivex = p2;
            // 将node1链接到"p1所在链表的末尾"
            if(mVexs[p1].firstEdge == NULL)
              mVexs[p1].firstEdge = node1;
            else
                linkLast(mVexs[p1].firstEdge, node1);
            // 初始化node2
            node2 = new ENode();
            node2->ivex = p1;
            // 将node2链接到"p2所在链表的末尾"
            if(mVexs[p2].firstEdge == NULL)
              mVexs[p2].firstEdge = node2;
            else
                linkLast(mVexs[p2].firstEdge, node2);
        }
    }
    
    /* 
     * 析构函数
     */
    ListUDG::~ListUDG() 
    {
    }
    
    /*
     * 将node节点链接到list的最后
     */
    void ListUDG::linkLast(ENode *list, ENode *node)
    {
        ENode *p = list;
    
        while(p->nextEdge)
            p = p->nextEdge;
        p->nextEdge = node;
    }
    
    /*
     * 返回ch的位置
     */
    int ListUDG::getPosition(char ch)
    {
        int i;
        for(i=0; i<mVexNum; i++)
            if(mVexs[i].data==ch)
                return i;
        return -1;
    }
    
    /*
     * 读取一个输入字符
     */
    char ListUDG::readChar()
    {
        char ch;
    
        do {
            cin >> ch;
        } while(!((ch>='a'&&ch<='z') || (ch>='A'&&ch<='Z')));
    
        return ch;
    }
    
    
    /*
     * 深度优先搜索遍历图的递归实现
     */
    void ListUDG::DFS(int i, int *visited)
    {
        ENode *node;
    
        visited[i] = 1;
        cout << mVexs[i].data << " ";
        node = mVexs[i].firstEdge;
        while (node != NULL)
        {
            if (!visited[node->ivex])
                DFS(node->ivex, visited);
            node = node->nextEdge;
        }
    }
    
    /*
     * 深度优先搜索遍历图
     */
    void ListUDG::DFS()
    {
        int i;
        int visited[MAX];       // 顶点访问标记
    
        // 初始化所有顶点都没有被访问
        for (i = 0; i < mVexNum; i++)
            visited[i] = 0;
    
        cout << "DFS: ";
        for (i = 0; i < mVexNum; i++)
        {
            if (!visited[i])
                DFS(i, visited);
        }
        cout << endl;
    }
    
    /*
     * 广度优先搜索(类似于树的层次遍历)
     */
    void ListUDG::BFS()
    {
        int head = 0;
        int rear = 0;
        int queue[MAX];     // 辅组队列
        int visited[MAX];   // 顶点访问标记
        int i, j, k;
        ENode *node;
    
        for (i = 0; i < mVexNum; i++)
            visited[i] = 0;
    
        cout << "BFS: ";
        for (i = 0; i < mVexNum; i++)
        {
            if (!visited[i])
            {
                visited[i] = 1;
                cout << mVexs[i].data << " ";
                queue[rear++] = i;  // 入队列
            }
            while (head != rear) 
            {
                j = queue[head++];  // 出队列
                node = mVexs[j].firstEdge;
                while (node != NULL)
                {
                    k = node->ivex;
                    if (!visited[k])
                    {
                        visited[k] = 1;
                        cout << mVexs[k].data << " ";
                        queue[rear++] = k;
                    }
                    node = node->nextEdge;
                }
            }
        }
        cout << endl;
    }
    
    /*
     * 打印邻接表图
     */
    void ListUDG::print()
    {
        int i,j;
        ENode *node;
    
        cout << "List Graph:" << endl;
        for (i = 0; i < mVexNum; i++)
        {
            cout << i << "(" << mVexs[i].data << "): ";
            node = mVexs[i].firstEdge;
            while (node != NULL)
            {
                cout << node->ivex << "(" << mVexs[node->ivex].data << ") ";
                node = node->nextEdge;
            }
            cout << endl;
        }
    }
    
    int main()
    {
        char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        char edges[][2] = {
            {'A', 'C'}, 
            {'A', 'D'}, 
            {'A', 'F'}, 
            {'B', 'C'}, 
            {'C', 'D'}, 
            {'E', 'G'}, 
            {'F', 'G'}};
        int vlen = sizeof(vexs)/sizeof(vexs[0]);
        int elen = sizeof(edges)/sizeof(edges[0]);
        ListUDG* pG;
    
        // 自定义"图"(输入矩阵队列)
        //pG = new ListUDG();
        // 采用已有的"图"
        pG = new ListUDG(vexs, vlen, edges, elen);
    
        pG->print();   // 打印图
        pG->DFS();     // 深度优先遍历
        pG->BFS();     // 广度优先遍历
    
        return 0;
    }

    References

    图的遍历之 深度优先搜索和广度优先搜索 - 如果天空不死 - 博客园

  • 相关阅读:
    sql排序对比(row_number,rank,dense_rank)
    SQL分组排名+行转列
    MS SQL 权限设置脚本
    centos8容器中安装lamp及wordpress
    MacOS禁止向日葵开机启动
    docker(1)
    centos7的firewalld
    ssh免密码
    CENTOS7安装vsftp
    centos 7 安装samba配置匿名共享文件夹
  • 原文地址:https://www.cnblogs.com/jjx2013/p/6223606.html
Copyright © 2011-2022 走看看