zoukankan      html  css  js  c++  java
  • 矩阵快速幂 模板

    /*
    矩阵快速幂模板   斐波那契
    */
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    
    const int maxn = 2;
    const int mod = 10000;
    
    //矩阵结构体
    struct Matrix{
        int a[maxn][maxn];
        void init(){    //初始化为单位矩阵
            memset(a, 0, sizeof(a));
            for(int i=0;i<maxn;++i){
                a[i][i] = 1;
            }
        }
    };
    
    //矩阵乘法
    Matrix mul(Matrix a, Matrix b){
        Matrix ans;
        for(int i=0;i<maxn;++i){
            for(int j=0;j<maxn;++j){
                ans.a[i][j] = 0;
                for(int k=0;k<maxn;++k){
                    ans.a[i][j] += a.a[i][k] * b.a[k][j];
                    ans.a[i][j] %= mod;
                }
            }
        }
        return ans;
    }
    
    //矩阵快速幂
    Matrix qpow(Matrix a, int n){
        Matrix ans;
        ans.init();
        while(n){
            if(n&1) ans = mul(ans, a);
            a = mul(a, a);
            n /= 2;
        }
        return ans;
    }
    
    void output(Matrix a){
        for(int i=0;i<maxn;++i){
            for(int j=0;j<maxn;++j){
                cout << a.a[i][j] << " ";
            }
            cout << endl;
        }
    }
    
    int main(){
        Matrix a;
        a.a[0][0] = 1;
        a.a[0][1] = 1;
        a.a[1][0] = 1;
        a.a[1][1] = 0;
    
        Matrix ans = qpow(a, 10);
    
        cout << "f(12) = [f(2), f(1)] = [1, 1] * a^10 = " << ans.a[0][0] + ans.a[1][0];
    
        return 0;
    }
    
                                       Recursive sequence
    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u
    Description
         Farmer John likes to play mathematics games with his N cows. Recently, they are attracted by recursive sequences. In each turn, the cows would stand in a line, while John writes two positive numbers a and b on a blackboard. And then, the cows would say their identity number one by one. The first cow says the first number a and the second says the second number b. After that, the i-th cow says the sum of twice the (i-2)-th number, the (i-1)-th number, and i4. Now, you need to write a program to calculate the number of the N-th cow in order to check if John’s cows can make it right.
     

    Input

    The first line of input contains an integer t, the number of test cases. t test cases follow.
    Each case contains only one line with three numbers N, a and b where N,a,b < 231
    as described above.
     

    Output

    For each test case, output the number of the N-th cow. This number might be very large, so you need to output it modulo 2147493647.
     
    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    
    using namespace std;
    const long long mod = 2147493647;
    const int MAXN = 8;
    struct prog
    {
        long long a[MAXN][MAXN];
    };
    prog s,B;
    prog matrixmul(prog a,prog b)  //矩阵相乘
    {
        prog c;
        for(int i=1; i<MAXN; ++i)
            for(int j=1; j<MAXN; ++j)
            {
                c.a[i][j]=0;
                for(int k=1; k<MAXN; k++)
                    c.a[i][j]+=(a.a[i][k]*b.a[k][j])%mod;
                c.a[i][j]%=mod;
            }
        return c;
    }
    prog mul(prog s,int k)
    {
        prog ans;
        for(int i=1; i<MAXN; ++i)
            for(int j=1; j<MAXN; ++j)
              ans.a[i][j]=(i==j)?1:0;
        while(k)
        {
            if(k&1)
                ans=matrixmul(ans,s);
            k>>=1;
            s=matrixmul(s,s);
        }
        return ans;
    }
    int main()
    {
        int n,t,a,b;
        for(scanf("%d",&t); t--;)
        {
            scanf("%d %d %d",&n,&a,&b);
            if(n==1)
            {
                printf("%lld
    ",a%mod);
                continue;
            }
            if(n==2)
            {
                printf("%lld
    ",b%mod);
                continue;
            }
            if(n==3)
            {
                printf("%lld
    ",(81+2*a%mod+b%mod)%mod);
                continue;
            }
            n-=2;
            for(int i=1; i<=7; ++i)
                for(int j=1; j<=7; ++j)
                  s.a[i][j]=0,
                  B.a[i][j]=0;
            for(int i=1; i<=5; i++)
                 s.a[i][1]=1;
            for(int i=2; i<=5; i++)
                 s.a[i][2]=i-1;
            s.a[3][3]=1;
            s.a[4][3]=3;
            s.a[5][3]=6;
            s.a[4][4]=1;
            s.a[5][4]=4;
            s.a[5][5]=1;
            s.a[6][5]=1;
            s.a[6][6]=1;
            s.a[7][6]=1;
            s.a[6][7]=2;
            B.a[1][1]=1;
            B.a[2][1]=3;
            B.a[3][1]=9;
            B.a[4][1]=27;
            B.a[5][1]=81;
            B.a[6][1]=b;
            B.a[7][1]=a;
            s=mul(s,n);
            s=matrixmul(s,B);
            printf("%lld
    ",s.a[6][1]%mod);
    
            
    
    
        }
        return 0;
    }
    View Code

    Sample Input

    2 3 1 2 4 1 10
     

    Sample Output

    85 369

    Hint

    In the first case, the third number is 85 = 2*1十2十3^4. In the second case, the third number is 93 = 2*1十1*10十3^4 and the fourth number is 369 = 2 * 10 十 93 十 4^4.
  • 相关阅读:
    mac安装完anaconda后,环境变量设置
    axios如何发送Basic Auth
    Django自带认证系统邮件模板自定义
    Ajax与Flask传值的跨域问题
    一道XXE漏洞和SSRF结合的题目
    如何分多次Pull requests
    如何使用C#写个多简单文档编辑器
    如何用Tkinter写个计算器
    LCTF2017学到的姿势
    Python 学习之路
  • 原文地址:https://www.cnblogs.com/jk17211764/p/9744907.html
Copyright © 2011-2022 走看看