题意:如标题
思路:对于奇环,一个二分图判定就ok了,有奇环<=>非二分图。对于偶环,考虑环必定出现在双联通分量里面,可以先求出图的双联通分量,对于一个双联通分量,对于双联通分量里面的每个环,如果是偶环,则偶环已找到,否则假定存在多个奇环,则可以任选两个奇环,把共享边去掉,一定可以得到一个新偶环,这种情况下偶环也是存在的。所以不存在偶环的情况只可能是双联通分量是一个大奇环,特点是:边数=点数,且为奇。于是先dfs一下标记所有桥,用并查集标记所有双联通分量,对每个双联通分量,计算它的点数,对每条边,如果它的两个端点属于同一个双联通分量,则对应双联通分量边数+1。由于是无向边,每条边会被考虑两次。对每个双联通分量,条件改成!((cnt_v*2=cnt_e)&1),如果上述式子为true,则表示存在偶环。

1 #pragma comment(linker, "/STACK:102400000,102400000") 2 3 #include <iostream> 4 #include <cstdio> 5 #include <algorithm> 6 #include <cstdlib> 7 #include <cstring> 8 #include <map> 9 #include <queue> 10 #include <deque> 11 #include <cmath> 12 #include <ctime> 13 #include <cctype> 14 #include <set> 15 #include <bitset> 16 #include <functional> 17 #include <numeric> 18 #include <stdexcept> 19 #include <utility> 20 #include <vector> 21 22 using namespace std; 23 24 #define mem0(a) memset(a, 0, sizeof(a)) 25 #define mem_1(a) memset(a, -1, sizeof(a)) 26 #define lson l, m, rt << 1 27 #define rson m + 1, r, rt << 1 | 1 28 #define define_m int m = (l + r) >> 1 29 #define rep_up0(a, b) for (int a = 0; a < (b); a++) 30 #define rep_up1(a, b) for (int a = 1; a <= (b); a++) 31 #define rep_down0(a, b) for (int a = b - 1; a >= 0; a--) 32 #define rep_down1(a, b) for (int a = b; a > 0; a--) 33 #define all(a) (a).begin(), (a).end() 34 #define lowbit(x) ((x) & (-(x))) 35 #define constructInt4(name, a, b, c, d) name(int a = 0, int b = 0, int c = 0, int d = 0): a(a), b(b), c(c), d(d) {} 36 #define constructInt3(name, a, b, c) name(int a = 0, int b = 0, int c = 0): a(a), b(b), c(c) {} 37 #define constructInt2(name, a, b) name(int a = 0, int b = 0): a(a), b(b) {} 38 #define pchr(a) putchar(a) 39 #define pstr(a) printf("%s", a) 40 #define sstr(a) scanf("%s", a) 41 #define sint(a) scanf("%d", &a) 42 #define sint2(a, b) scanf("%d%d", &a, &b) 43 #define sint3(a, b, c) scanf("%d%d%d", &a, &b, &c) 44 #define pint(a) printf("%d ", a) 45 #define test_print1(a) cout << "var1 = " << a << endl 46 #define test_print2(a, b) cout << "var1 = " << a << ", var2 = " << b << endl 47 #define test_print3(a, b, c) cout << "var1 = " << a << ", var2 = " << b << ", var3 = " << c << endl 48 49 typedef long long LL; 50 typedef pair<int, int> pii; 51 typedef vector<int> vi; 52 53 const int dx[8] = {0, 0, -1, 1, 1, 1, -1, -1}; 54 const int dy[8] = {-1, 1, 0, 0, 1, -1, 1, -1 }; 55 const int maxn = 1e5 + 7; 56 const int md = 10007; 57 const int inf = 1e9 + 7; 58 const LL inf_L = 1e18 + 7; 59 const double pi = acos(-1.0); 60 const double eps = 1e-6; 61 62 template<class T>T gcd(T a, T b){return b==0?a:gcd(b,a%b);} 63 template<class T>bool max_update(T &a,const T &b){if(b>a){a = b; return true;}return false;} 64 template<class T>bool min_update(T &a,const T &b){if(b<a){a = b; return true;}return false;} 65 template<class T>T condition(bool f, T a, T b){return f?a:b;} 66 template<class T>void copy_arr(T a[], T b[], int n){rep_up0(i,n)a[i]=b[i];} 67 int make_id(int x, int y, int n) { return x * n + y; } 68 69 struct UFS { 70 vector<int> F; 71 void init(int n) { F.resize(n + 5); for (int i = 0; i <= n; i ++) F[i] = i; } 72 int get(int u) { if (F[u] == u) return u; return F[u] = get(F[u]); } 73 void add(int u, int v) { F[get(u)] = get(v); } 74 }; 75 76 struct Graph { 77 vector<vector<int> > G; 78 void clear() { G.clear(); } 79 void resize(int n) { G.resize(n + 2); } 80 void add(int u, int v) { G[u].push_back(v); } 81 vector<int> & operator [] (int u) { return G[u]; } 82 }; 83 84 Graph G; 85 int n, m; 86 87 int color[maxn]; 88 bool BG_chk(int u, int c) { 89 color[u] = c; 90 int sz = G[u].size(); 91 rep_up0(i, sz) { 92 int v = G[u][i]; 93 if (color[v] == c) return false; 94 if (color[v]) continue; 95 if (!BG_chk(v, 3 - c)) return false; 96 } 97 return true; 98 } 99 100 UFS us; 101 int pre[maxn], low[maxn], dfs_clock; 102 int getBridge(int u, int fa) { 103 int lowu = pre[u] = ++ dfs_clock; 104 int child = 0, sz = G[u].size(); 105 rep_up0(i, sz) { 106 int v = G[u][i]; 107 if (!pre[v]) { 108 child ++; 109 int lowv = getBridge(v, u); 110 min_update(lowu, lowv); 111 if (lowv <= pre[u]) us.add(u, v); 112 } 113 else { 114 if (pre[v] < pre[u] && v != fa) { 115 min_update(lowu, pre[v]); 116 } 117 } 118 } 119 return low[u] = lowu; 120 } 121 122 int cnt_v[maxn], cnt_e[maxn], vis[maxn]; 123 bool findEvenRing() { 124 dfs_clock = 0; 125 mem0(pre); 126 rep_up1(i, n) { 127 if (!pre[i]) { 128 getBridge(i, 0); 129 } 130 } 131 mem0(cnt_e); 132 mem0(cnt_v); 133 rep_up1(i, n) { 134 int u = us.get(i); 135 cnt_v[u] ++; 136 } 137 rep_up1(i, n) { 138 int sz = G[i].size(); 139 rep_up0(j, sz) { 140 int u = G[i][j], tmp; 141 if ((tmp = us.get(i)) == us.get(u)) { 142 cnt_e[tmp] ++; 143 } 144 } 145 } 146 mem0(vis); 147 rep_up1(i, n) { 148 int u = us.get(i); 149 if (vis[u]) continue; 150 vis[u] = true; 151 if ((cnt_v[u] * 2 != cnt_e[u] || !(cnt_v[u] & 1)) && cnt_v[u] >= 4) return true; 152 } 153 return false; 154 } 155 156 int main() { 157 //freopen("in.txt", "r", stdin); 158 int T; 159 cin >> T; 160 while (T --) { 161 cin >> n >> m; 162 G.clear(); 163 G.resize(n); 164 us.init(n); 165 rep_up0(i, m) { 166 int u, v; 167 sint2(u, v); 168 G.add(u, v); 169 G.add(v, u); 170 } 171 bool odd = false, even = findEvenRing(); 172 mem0(color); 173 rep_up1(i, n) { 174 if (!color[i]) { 175 odd = odd || !BG_chk(i, 1); 176 } 177 } 178 puts(odd? "YES" : "NO"); 179 puts(even? "YES" : "NO"); 180 } 181 return 0; 182 }