zoukankan      html  css  js  c++  java
  • [hdu5225]逆序对统计

    题目:给定一个1到n的排列,求字典序小于这个排列的所有排列的逆序对数之和。

    思路:既然是求字典序小于这个排列的,不妨将排列根据和它前k位相同来分类,然后枚举第k+1位的数(小于原序列第k+1位的数),假设逆序对的位置为(x,y),对于1<=x<k+1,x<y<=k+1和1<=x<=k+1,k+2<=y<=n的答案是容易计算出来的,对于k+2<=x<n,x<y<=n的答案则可以通过dp来计算由于剩余的数已没有大小意义了,假设剩余p个不同的数,则p个数的全排列产生的逆序对总数与1-p这p个数产生的全排列的逆序对总数是相同的,所以可以令dp[n]表示n个数产生的全排列的逆序对总数,则dp[n] =dp[n-1]*n+C(n,2)*(n-1)!。

      1 #pragma comment(linker, "/STACK:10240000,10240000")
      2 
      3 #include <iostream>
      4 #include <cstdio>
      5 #include <algorithm>
      6 #include <cstdlib>
      7 #include <cstring>
      8 #include <map>
      9 #include <queue>
     10 #include <deque>
     11 #include <cmath>
     12 #include <vector>
     13 #include <ctime>
     14 #include <cctype>
     15 #include <set>
     16 #include <bitset>
     17 #include <functional>
     18 #include <numeric>
     19 #include <stdexcept>
     20 #include <utility>
     21 
     22 using namespace std;
     23 
     24 #define mem0(a) memset(a, 0, sizeof(a))
     25 #define mem_1(a) memset(a, -1, sizeof(a))
     26 #define lson l, m, rt << 1
     27 #define rson m + 1, r, rt << 1 | 1
     28 #define define_m int m = (l + r) >> 1
     29 #define rep_up0(a, b) for (int a = 0; a < (b); a++)
     30 #define rep_up1(a, b) for (int a = 1; a <= (b); a++)
     31 #define rep_down0(a, b) for (int a = b - 1; a >= 0; a--)
     32 #define rep_down1(a, b) for (int a = b; a > 0; a--)
     33 #define all(a) (a).begin(), (a).end()
     34 #define lowbit(x) ((x) & (-(x)))
     35 #define constructInt4(name, a, b, c, d) name(int a = 0, int b = 0, int c = 0, int d = 0): a(a), b(b), c(c), d(d) {}
     36 #define constructInt3(name, a, b, c) name(int a = 0, int b = 0, int c = 0): a(a), b(b), c(c) {}
     37 #define constructInt2(name, a, b) name(int a = 0, int b = 0): a(a), b(b) {}
     38 #define pchr(a) putchar(a)
     39 #define pstr(a) printf("%s", a)
     40 #define sstr(a) scanf("%s", a)
     41 #define sint(a) scanf("%d", &a)
     42 #define sint2(a, b) scanf("%d%d", &a, &b)
     43 #define sint3(a, b, c) scanf("%d%d%d", &a, &b, &c)
     44 #define pint(a) printf("%d
    ", a)
     45 #define test_print1(a) cout << "var1 = " << a << endl
     46 #define test_print2(a, b) cout << "var1 = " << a << ", var2 = " << b << endl
     47 #define test_print3(a, b, c) cout << "var1 = " << a << ", var2 = " << b << ", var3 = " << c << endl
     48 #define mp(a, b) make_pair(a, b)
     49 #define pb(a) push_back(a)
     50 
     51 typedef unsigned int uint;
     52 typedef long long LL;
     53 typedef pair<int, int> pii;
     54 typedef vector<int> vi;
     55 
     56 const int dx[8] = {0, 0, -1, 1, 1, 1, -1, -1};
     57 const int dy[8] = {-1, 1, 0, 0, 1, -1, 1, -1 };
     58 const int maxn = 1e8 + 17;
     59 const int md = 1e9 + 7;
     60 const int inf = 1e9 + 7;
     61 const LL inf_L = 1e18 + 7;
     62 const double pi = acos(-1.0);
     63 const double eps = 1e-6;
     64 
     65 template<class T>T gcd(T a, T b){return b==0?a:gcd(b,a%b);}
     66 template<class T>bool max_update(T &a,const T &b){if(b>a){a = b; return true;}return false;}
     67 template<class T>bool min_update(T &a,const T &b){if(b<a){a = b; return true;}return false;}
     68 template<class T>T condition(bool f, T a, T b){return f?a:b;}
     69 template<class T>void copy_arr(T a[], T b[], int n){rep_up0(i,n)a[i]=b[i];}
     70 int make_id(int x, int y, int n) { return x * n + y; }
     71 
     72 template<int mod>
     73 struct ModInt {
     74     const static int MD = mod;
     75     int x;
     76     ModInt(int x = 0): x(x) { if (x < 0) x += mod; }
     77     int get() { return x; }
     78 
     79     ModInt operator + (const ModInt &that) const { int x0 = x + that.x; return ModInt(x0 < MD? x0 : x0 - MD); }
     80     ModInt operator - (const ModInt &that) const { int x0 = x - that.x; return ModInt(x0 < MD? x0 + MD : x0); }
     81     ModInt operator * (const ModInt &that) const { return ModInt((long long)x * that.x % MD); }
     82     ModInt operator / (const ModInt &that) const { return *this * that.inverse(); }
     83 
     84     ModInt operator += (const ModInt &that) { x += that.x; if (x >= MD) x -= MD; }
     85     ModInt operator -= (const ModInt &that) { x -= that.x; if (x < 0) x += MD; }
     86     ModInt operator *= (const ModInt &that) { x = (long long)x * that.x % MD; }
     87     ModInt operator /= (const ModInt &that) { *this = *this / that; }
     88 
     89     ModInt inverse() const {
     90         int a = x, b = MD, u = 1, v = 0;
     91         while(b) {
     92             int t = a / b;
     93             a -= t * b; std::swap(a, b);
     94             u -= t * v; std::swap(u, v);
     95         }
     96         if(u < 0) u += MD;
     97         return u;
     98     }
     99 
    100 };
    101 typedef ModInt<md> mint;
    102 mint dp[107], fact[107];
    103 int n, a[107];
    104 bool vis[107];
    105 
    106 void init() {
    107     fact[0] = 1;
    108     rep_up1(i, 102) {
    109         dp[i] = dp[i - 1] * i + fact[i - 1] * i * (i - 1) / 2;
    110         fact[i] = fact[i - 1] * i;
    111     }
    112 }
    113 
    114 int main() {
    115     //freopen("in.txt", "r", stdin);
    116     init();
    117     while (cin >> n) {
    118         rep_up0(i, n) sint(a[i]);
    119         mem0(vis);
    120         mint ans = 0;
    121         rep_up0(i, n) {
    122             int c = 0;
    123             rep_up0(j, i) {
    124                 for (int k = j + 1; k < i; k ++) {
    125                     if (a[j] > a[k]) c ++;
    126                 }
    127             }
    128             rep_up1(j, a[i] - 1) {
    129                 if (!vis[j]) {
    130                     ans += fact[n - i - 1] * c;
    131                     rep_up0(k, i) {
    132                         if (a[k] > j) ans += fact[n - i - 1];
    133                     }
    134                     int sum = 0;
    135                     vis[j] = true;
    136                     rep_up1(k, n) {
    137                         if (!vis[k]) sum ++;
    138                         else ans += fact[n - i - 1] * sum;
    139                     }
    140                     ans += dp[n - i - 1];
    141                     vis[j] =false;
    142                 }
    143             }
    144             vis[a[i]] = true;
    145         }
    146         cout << ans.get() << endl;
    147     }
    148     return 0;
    149 }
    View Code
  • 相关阅读:
    echarts 报表使用
    Eclipse Java注释模板设置详解
    简单实现支付密码输入框 By HL
    一个label 混搭不同颜色,不同字体的文字.. by 徐
    有关MVC设计模式 #DF
    自定义粘贴板-陈鹏
    TableView 常用技巧与功能详解
    ios 类别和扩展-赵小波
    推荐一本书--《浪潮之巅》(完整版的哦)----董鑫
    iOS block的用法 by -- 周傅琦君
  • 原文地址:https://www.cnblogs.com/jklongint/p/4493488.html
Copyright © 2011-2022 走看看