zoukankan      html  css  js  c++  java
  • [hdu5323]复杂度计算,dfs

    题意:求最小的线段树的右端点(根节点表示区间[0,n]),使得给定的区间[L,R]是线段树的某个节点。

    数据范围:L,R<=1e9,L/(R-L+1)<=2015

    思路:首先从答案出发来判断是否出现给定区间是行不通的,于是只能从[L,R]出发来寻找答案。如果一个子节点表示区间[L,R],那么它的父节点可能是四种表示方式之一,分别是[L,2R-L],[L,2R-L+1],[2L-R-1,R],[2L-R-2,R],其中父节点为[L,2R-L]时要求R>L,否则它的右儿子就为空了,这是不允许的。接下来看无解的条件,如果L<(R-L+1)了,那么就是无解的,因为左儿子不可能比右儿子表示的区间长度小,也就是说L/(R-L+1)小于1时就可以判定为无解了。注意到由儿子节点到父亲节点,(R-L+1)变为了原来的两倍左右,而L是非增的,所以L/(R-L+1)每经过一层,值变为原来的1/2左右,有题目给定的数据,L/(R-L+1)<=2015,所以层数最多只有log22015=11,这不难想到dfs暴力扩展了,dfs总共只会扩展出4^11=4000000个节点,可以承受。


    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    /* ******************************************************************************** */
    #include <iostream>                                                                 //
    #include <cstdio>                                                                   //
    #include <cmath>                                                                    //
    #include <cstdlib>                                                                  //
    #include <cstring>                                                                  //
    #include <vector>                                                                   //
    #include <ctime>                                                                    //
    #include <deque>                                                                    //
    #include <queue>                                                                    //
    #include <algorithm>                                                                //
    using namespace std;                                                                //
                                                                                        //
    #define pb push_back                                                                //
    #define mp make_pair                                                                //
    #define X first                                                                     //
    #define Y second                                                                    //
    #define all(a) (a).begin(), (a).end()                                               //
    #define foreach(i, a) for (typeof(a.begin()) it = a.begin(); it != a.end(); it ++)  //
                                                                                        //
    void RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);}    //
    void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>                    //
    void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1;          //
    while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>      //
    void print(const T t){cout<<t<<endl;}template<typename F,typename...R>              //
    void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>   //
    void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}   //
                                                                                        //
    typedef pair<intint> pii;                                                         //
    typedef long long ll;                                                               //
    typedef unsigned long long ull;                                                     //
                                                                                        //
    /* -------------------------------------------------------------------------------- */
                                                                                        //
    template<typename T>bool umax(T &a, const T &b) {
        return a >= b? false : (a = b, true);
    }
     
    ll ans, L, R;
     
    void dfs(ll L, ll R) {
        if (L == 0) {
            if (ans == -1 || ans > R) ans = R;
            return ;
        }
        ll s = L, t = R - L + 1;
        if (s < t) return ;
        if (L < R) dfs(L, 2 * R - L);
        dfs(L, 2 * R - L + 1);
        dfs(2 * L - R - 1, R);
        dfs(2 * L - R - 2, R);
    }
    int main() {
    #ifndef ONLINE_JUDGE
        freopen("in.txt""r", stdin);
    #endif // ONLINE_JUDGE
        while (cin >> L >> R) {
            ans = -1;
            dfs(L, R);
            cout << ans << endl;
        }
        return 0;                                                                       //
    }                                                                                   //
                                                                                        //
                                                                                        //
                                                                                        //
    /* ******************************************************************************** */
  • 相关阅读:
    after() 和 remove() 实现替换
    jquery not() 方法
    jQuery filter() , end()
    jquery 拓展函数集
    window onload || jquery $()
    java jdk environment variables
    mysql 64 zip download
    闭包初探
    hdu 1195 Open the Lock (BFS)
    poj 1743 Musical Theme (后缀数组+二分法)
  • 原文地址:https://www.cnblogs.com/jklongint/p/4684221.html
Copyright © 2011-2022 走看看