zoukankan      html  css  js  c++  java
  • [hdu2119]二分图最小覆盖,最大匹配

    题意:给一个01矩阵,每次可以选一行或一列,打掉上面所有的1,求打掉所有的1所需的最小次数。

    思路:经典的模型了,二分图最小覆盖=最大匹配。所谓最小覆盖是指选最少的点关联所有的边。容易得到将行和列看成点,1看成边,那么就是选尽量少的行和列来关联所有的1,最小覆盖模型,用最大匹配做。可以选择匈牙利算法,或者直接最大流。


    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    /* ******************************************************************************** */
    #include <iostream>                                                                 //
    #include <cstdio>                                                                   //
    #include <cmath>                                                                    //
    #include <cstdlib>                                                                  //
    #include <cstring>                                                                  //
    #include <vector>                                                                   //
    #include <ctime>                                                                    //
    #include <deque>                                                                    //
    #include <queue>                                                                    //
    #include <algorithm>                                                                //
    #include <map>                                                                      //
    #include <cmath>                                                                    //
    using namespace std;                                                                //
                                                                                        //
    #define pb push_back                                                                //
    #define mp make_pair                                                                //
    #define X first                                                                     //
    #define Y second                                                                    //
    #define all(a) (a).begin(), (a).end()                                               //
    #define fillchar(a, x) memset(a, x, sizeof(a))                                      //
                                                                                        //
    typedef pair<intint> pii;                                                         //
    typedef long long ll;                                                               //
    typedef unsigned long long ull;                                                     //
                                                                                        //
    #ifndef ONLINE_JUDGE                                                                //
    void RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);}    //
    void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>                    //
    void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1;          //
    while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>      //
    void print(const T t){cout<<t<<endl;}template<typename F,typename...R>              //
    void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>   //
    void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}   //
    #endif // ONLINE_JUDGE                                                              //
    template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}        //
    template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);}        //
    template<typename T>                                                                //
    void V2A(T a[],const vector<T>&b){for(int i=0;i<b.size();i++)a[i]=b[i];}            //
    template<typename T>                                                                //
    void A2V(vector<T>&a,const T b[]){for(int i=0;i<a.size();i++)a[i]=b[i];}            //
                                                                                        //
    const double PI = acos(-1.0);                                                       //
    const int INF = 1e9 + 7;                                                            //
                                                                                        //
    /* -------------------------------------------------------------------------------- */
     
    struct Edmonds {
        const static int maxn = 1e2 + 7;
        int n, m;
        bool g[maxn][maxn];
        bool vis[maxn];
        int left[maxn];
     
        void init(int n, int m) {
            this->n = n;
            this->m = m;
            memset(g, 0, sizeof(g));
            memset(left, -1, sizeof(left));
        }
        void add(int u, int v) {
            g[u][v] = true;
        }
        bool match(int u) {
            for(int v = 1; v <= m; v++)if(g[u][v] && !vis[v]) {
                    vis[v] = true;
                    if(left[v] == -1 || match(left[v])) {
                        left[v] = u;
                        return true;
                    }
                }
            return false;
        }
     
        int solve() {
            int ans = 0;
            for(int i = 1; i <= n; i++) {
                memset(vis, 0, sizeof(vis));
                if(match(i)) ans++;
            }
            return ans;
        }
    };/** 点从1开始编号 **/
    Edmonds solver;
     
    int main() {
    #ifndef ONLINE_JUDGE
        freopen("in.txt""r", stdin);
    #endif // ONLINE_JUDGE
        int n, m;
        while (cin >> n, n) {
            cin >> m;
            solver.init(n, m);
            for (int i = 0; i < n; i ++) {
                for (int j = 0; j < m; j ++) {
                    int x;
                    scanf("%d", &x);
                    if (x) solver.add(i + 1, j + 1);
                }
            }
            cout << solver.solve() << endl;
        }
        return 0;
    }
    /* ******************************************************************************** */
  • 相关阅读:
    当事人在土地征收补偿纠纷中需要收集的证据
    ExtJs学习
    谈谈对于企业级系统架构的理解 转来的
    log4net详细配置 转
    基于RBAC的权限设计3
    当事人在土地征收补偿纠纷中需要收集的证据类型
    权限管理设计2
    SQL 字符串分割
    RBAC原理介绍及kasai使用分析
    权限管理设计1
  • 原文地址:https://www.cnblogs.com/jklongint/p/4695002.html
Copyright © 2011-2022 走看看