Written with StackEdit.
Description
众所周知,双炮叠叠将是中国象棋中很厉害的一招必杀技。炮吃子时必须隔一个棋子跳吃,即俗称"炮打隔子"。
炮跟炮显然不能在一起打起来,于是(rly)一天借来了许多许多的炮在棋盘上摆了起来……他想知道,在(N×M)的矩形
方格中摆若干炮(可以不摆)使其互不吃到的情况下方案数有几种。
棋子都是相同的。
Input
一行,两个正整数(N)和(M)。
(N<=100,M<=100.)
Output
一行,输出方案数(mod) (999983)。
Sample Input
1 3
Sample Output
7
Solution
- 易知一行或一列最多只能放两个炮.
- 注意到炮和皇后不一样,交换两行或两列是不影响的.
- 所以我们不用记录具体的哪些列上有炮,只需要记录有(1)个炮的有几列,有(2)个炮的有几列就可以了.
- 设(f[i][j][k])表示放好前(i)行,其中(j)列有(1)个炮,(k)列有(2)个炮的方案数.
- 转移的时候,讨论一下放(0/1/2)个炮,炮放在有(0/1)个炮的位置,刷表转移即可.
#include<bits/stdc++.h>
using namespace std;
typedef long long LoveLive;
inline int read()
{
int out=0,fh=1;
char jp=getchar();
while ((jp>'9'||jp<'0')&&jp!='-')
jp=getchar();
if (jp=='-')
{
fh=-1;
jp=getchar();
}
while (jp>='0'&&jp<='9')
{
out=out*10+jp-'0';
jp=getchar();
}
return out*fh;
}
int n,m;
const int P=999983;
inline int add(int a,int b)
{
return (a + b) % P;
}
inline int mul(int a,int b)
{
return 1LL * a * b % P;
}
const int MAXN=110;
int f[MAXN][MAXN][MAXN];
inline void upd(int &x,int y)
{
x=add(x,y);
}
int main()
{
n=read(),m=read();
f[0][0][0]=1;
for(int i=0; i<=n-1; ++i)
for(int j=0; j<=m; ++j)//j列放了1个
for(int k=0; j+k<=m; ++k)//k列放了2个
{
if(!f[i][j][k])
continue;
int p=m-j-k;//没有炮的列数
//一行最多放2个炮
upd(f[i+1][j][k],f[i][j][k]);//不放
if(p>=1)
upd(f[i+1][j+1][k],mul(p,f[i][j][k]));//0 -> 1
if(j>=1)
upd(f[i+1][j-1][k+1],mul(j,f[i][j][k]));//1 -> 2
if(p>=1 && j>=1)
upd(f[i+1][j][k+1],mul(p*j,f[i][j][k]));//0 1 -> 1 2
if(p>=2)
upd(f[i+1][j+2][k],mul(p*(p-1)/2,f[i][j][k]));//0 0 -> 1 1
if(j>=2)
upd(f[i+1][j-2][k+2],mul(j*(j-1)/2,f[i][j][k]));//1 1 -> 2 2
}
int ans=0;
for(int j=0; j<=m; ++j)
for(int k=0; j+k<=m; ++k)
upd(ans,f[n][j][k]);
printf("%d
",ans);
return 0;
}