zoukankan      html  css  js  c++  java
  • ZOJ

    Connect them ZOJ - 3204

    You have n computers numbered from 1 to n and you want to connect them to make a small local area network (LAN). All connections are two-way (that is connecting computers i and j is the same as connecting computers j and i). The cost of connecting computer i and computer j is cij. You cannot connect some pairs of computers due to some particular reasons. You want to connect them so that every computer connects to any other one directly or indirectly and you also want to pay as little as possible.

    Given n and each cij , find the cheapest way to connect computers.

    Input

    There are multiple test cases. The first line of input contains an integer T (T <= 100), indicating the number of test cases. Then T test cases follow.

    The first line of each test case contains an integer n (1 < n <= 100). Then n lines follow, each of which contains n integers separated by a space. The j-th integer of the i-th line in these n lines is cij, indicating the cost of connecting computers iand j (cij = 0 means that you cannot connect them). 0 <= cij <= 60000, cij = cjicii= 0, 1 <= ij <= n.

    Output

    For each test case, if you can connect the computers together, output the method in in the following fomat:

    i1 j1 i1 j1 ......

    where ik ik (k >= 1) are the identification numbers of the two computers to be connected. All the integers must be separated by a space and there must be no extra space at the end of the line. If there are multiple solutions, output the lexicographically smallest one (see hints for the definition of "lexicography small") If you cannot connect them, just output "-1" in the line.

    <b< dd="">

    Sample Input

    2
    3
    0 2 3
    2 0 5
    3 5 0
    2
    0 0
    0 0
    

    Sample Output

    1 2 1 3
    -1


    题意:最小生成树,但要求最小字典序的解。
    那么变化就是在cmp的函数书写的,不能仅仅的比较value,还要把from,to按字典序的顺序来加入,当然输出也是如此。
    所以重写两个cmp函数就可以了。

    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <cmath>
    #include <algorithm>
    using namespace std;
    const int maxn=105;
    int T,x;
    int n,p,q;
    int cnt,sum;
    struct Node
    {
        int from,to;
        double value;
    }node[maxn*maxn],ans[maxn*maxn];
    int fa[maxn];
    bool cmp(Node a,Node b)
    {
        if(a.value!=b.value)
            return a.value<b.value;
        else if(a.from!=b.from)
            return a.from<b.from;
        else
            return a.to<b.to;
    }
    bool cmpp(Node a,Node b)
    {
        if(a.from==b.from)
            return a.to<b.to;
        else
            return a.from<b.from;
    }
    void init()
    {
        for(int i=0;i<maxn;i++)
            fa[i]=i;
    }
    int findd(int x)
    {
        if(fa[x]==x)
            return x;
        else
            return fa[x]=findd(fa[x]);
    }
    void Kruskal()
    {
        sum=0;
        for(int i=1;i<=cnt;i++)
        {
            int fx=findd(node[i].from);
            int fy=findd(node[i].to);
            if(fx!=fy)
            {
                ans[sum++]=node[i];
                fa[fx]=fy;
            }
        }
    }
    
    int main()
    {
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d",&n);
            cnt=0;
            for(int i=1;i<=n;i++)
            {
                for(int j=1;j<=n;j++)
                {
                    scanf("%d",&x);
                    if(x==0||j<=i)
                        continue;
                    cnt++;
                    node[cnt].from=i;node[cnt].to=j;
                    node[cnt].value=x;
                }
            }
            init();
            sort(node+1,node+cnt+1,cmp);
            sum=0;
            Kruskal();
            if(sum!=n-1)
            {
                printf("-1
    ");
                continue;
            }
            else
            {
                sort(ans,ans+sum,cmpp);
                for(int i=0;i<sum-1;i++)
                    printf("%d %d ",ans[i].from,ans[i].to);
                printf("%d %d
    ",ans[sum-1].from,ans[sum-1].to);
            }
        }
        return 0;
    }
  • 相关阅读:
    企业级管理软件快速开发平台在同一个数据库上进行多个系统开发
    企业级管理软件快速开发平台设计思想分享
    由IT代码工转行做销售2年,给自己的销售管理团队做了个CRM,欢迎大家批评指正!
    探讨未来平台化开发技术
    企业级管理软件快速开发平台极致业务基础平台开发效果一览
    封装原生js的Ajax方法
    正则表达式之圆括号(转)
    完美/兼容版添加事件以及删除事件
    判断浏览器版本及浏览器类型
    使用Normalize.css重置默认样式
  • 原文地址:https://www.cnblogs.com/jkzr/p/10021603.html
Copyright © 2011-2022 走看看