zoukankan      html  css  js  c++  java
  • 图总结

    1.思维导图

    2.重要概念的笔记(不求多但求精)

    建图

    1.邻接矩阵
    //根据value节点值返回节点位置,没找到则返回-1
    int LocateVex(MyGraph &G, VexType value)
    {
    	for (int i = 0; i < G.vexNum; i++)
    	{
    		if (value == G.vexs[i])
    			return i;
    	}
    	return -1;
    }
    
    void CreateGraphFromConsole(MyGraph &G, int vexNum, int arcNum)
    {
    	G.vexNum = vexNum;
    	G.arcNum = arcNum;
    	int x,y;
    	for (int i = 0; i < vexNum; i++)
    	{
    		for (int j = 0; j < vexNum; j++)
    		{
    			G.edges[i][j] = 0;//初始化
    		}
    	}
    	printf("Please input %d vex name:
    ",vexNum);
    	//输入点的信息
    	for (int i = 0; i < vexNum; i++)
    	{
    		printf("i=%d  ", i);
    		cin >> G.vexs[i];
    	}
    	//输入边的的信息
    	for ( i = 0; i < e; i++) {
    		cin >> x >> y;
    		G.edges[LocateVex(G, x)][LocateVex(G, y)] = 1;
    		//G.edges[LocateVex(G, x)][LocateVex(G, y)] = 1;无向图
        }
    }
    2.邻接表
    void CreateAdj(AdjGraph*& G, int n, int e) {
    	G = new AdjGraph;
    	ArcNode* p;
    	int x, y;
    	G->e = e;
    	G->n = n;
    	int i, j;
    	for (i = 0; i < G->n; i++) {
    		G->adjlist[i].firstarc = NULL;//初始化
    	}
    		
    	for (i = 0; i < G->e; i++) {
    		cin >> x >> y;//头插法建立节点
    		p = new ArcNode;
    		p->adjvex = y;
    		p->nextarc = G->adjlist[x].firstarc;
    		G->adjlist[x].firstarc = p;
    		/*
    		p = new ArcNode;//无向图
    		p->adjvex = x;
    		p->nextarc = G->adjlist[y].firstarc;
    		G->adjlist[y].firstarc = p;
    		*/
    	}
    }
    

    图遍历

    void DFS(MGraph g, int v) {
    	int i, j;
    	if (visited[v - 1] == 0) {
    	visited[v-1] = 1;
    	for (i = 0; i<g.n; i++) {
    		if (visited[i] == 0) {
    			break;
    		}
    	}
    	cout << v<<" ";
    		for (j = 0; j < g.n; j++) 
    			if (visited[j] == 0 && g.edges[v-1][j] == 1) {
    				DFS(g, j + 1);
    			}
    	
    }
    void BFS(MGraph g, int v) {
    	queue<int> q;
    	int i = 0, j;
    	for (i = 0; i < g.n; i++)
    		visited[i] = 0;
    	q.push(v);
    	visited[v - 1] = 1;
    	while (!q.empty()) {
    		v = q.front();
    			cout << v << " ";
    		for (i = 0; i < g.n; i++) {
    			if (g.edges[v - 1][i] && !visited[i]) {
    				q.push(i + 1);
    				visited[i] = 1;
    				
    			}
    		}
    		q.pop();
    	}
    }
    

    prim算法

    void prim(mygragh g)
    {
    	int lowcost[g.n];
    	int close[g.n];
    	int i, j, k = 0;
    	int count = 0;
    		for (i = 0; i < g.n; i++) {
    			lowcost[i] = g.edges[0][i];//初始化
    			close[i] = 0;
    		}
    		lowcost[0] = 0;
    		for (i = 0; i < g.n - 1; i++)//找出n-1个顶点
    		{
    			int min = max;
    			for (j = 0; j < g.n; j++) {
    				if (lowcost[j] != 0 && lowcost[j] < min) {//在V-U中找最近的顶点
    					min = lowcost[j];
    					k = j;//记录最近顶点编号
    				}
    			}
    			printf("边(%d,%d)权:%d
    ",closest[k],k,min)
    			lowcost[k] = 0;
    			for (j = 0; j < g.n; j++) {//进行调整
    				if (lowcost[j] != 0 && g.edges[k][j] < lowcost[j]) {
    					lowcost[j] = g.edges[k][j];
    					close[k] = k;
    				}
    			}
    		}
    }
    

    最短路径

    //单源最短路径
    void Dijkstra(MGraph g, int v) {
    	int dist[MaxSize], path[MaxSize];
    	int s[MaxSize];
    	int i, j, u,temp;
    	for (i = 0; i < g.n; i++) {
    	dist[i] = g.edges[v][i];
    	s[i] = 0;
    	if (g.edges[v][i] < INF) path[i] = v;
    	else path[i] = -1;
    	}
    	s[v] = 1; path[v] = 0;
    	for (i = 0; i < g.n; i++)
    	{
    		temp = INF;
    		for (j = 0; j < g.n; j++) {
    			if (s[j]==0 && dist[j] < temp) {
    				u = j;
    				temp = dist[j];
    			}
    		}
    	s[u] = 1;	
    	for (j = 0; j < g.n; j++) {
    		if (!s[j]) {
    			if (g.edges[u][j] < INF && dist[u] + g.edges[u][j] < dist[j]) {
    				dist[j] = dist[u] + g.edges[u][j];
    				path[j] = u;
    			}
    		}
    	}
    	}
    }
    
    //多源最短路径
    void floyd(mygragh g, int A[][MAX], int path[][MAX]) {
    	int i, k, j, s;
    	int apath[MAX], d;
    	for (i = 0; i < g.n; i++) {
    		for (j = 0; i < g.n; j++) {
    			A[i][j] = g.edges[i][j];
    			if (i != j && g.edges[i][j] < INF)
    				path[i][j] = i;//i到j有边
    			else path[i][j] = -1;//i到j无边
    		}
    		for (k = 0; k < g.n; k++)
    		{
    			for(i=0;i<g.n;i++)
    				for(j=0;j<g.n;j++)
    					if (A[i][j] > A[i][k] + A[k][j])
    					{
    						A[i][j] = A[i][k] + A[k][j];//修改最短路径长度
    						path[i][j] = path[k][j];
    					}
    		}
    	}
    }
    

    拓扑排序

    void TopSort(AdjGragh* G)
    {
    	int i, j;
    	int st[MAX], top = -1;
    	ArcNode* p;
    	for (i = 0; i < G->n; i++)//初始化
    		G->adjlist[i].count = 0;
    	for (i = 0; i < G->n; i++)
    	{
    		p = G->adjlist[i].firstarc;
    		while (!p)
    		{
    			G->adjlist[p->adjvex].count++;
    			p = p->nextarc;
    		}
    	}
    	for (i = 0; i < G->n; i++)//入度为0顶点进栈
    		if (G->adjlist[i].count == 0)
    		{
    			top++;
    			st[top] = i;
    		}
    	while (top > -1)//栈不空
    	{
    		i = st[top];
    		top--;
    		cout << i << " ";//出栈
    		p = G->adjlist[i].firstarc;
    		while (p)//将顶点i出边邻接点入度减1
    		{
    			j = p->adjvex;
    			G->adjlist[j].count--;
    			if (G->adjlist[j].count == 0)//入度0的节点入栈
    			{
    				top++;
    				st[top] = j;
    			}
    			p = p->nextarc;
    		}
    	}
    }
    

    AOV网:

    用顶点表示活动,用弧表示活动时间的优先关系的有向图称为顶点表示活动(Activity On Vertex Network)的网,简称AOV网。

    AOE网:

    用顶点表示事件,用弧表示活动,权表示活动持续时间(Activity On Edge Network)的网,简称AOE网。

    ①V的最早发生时间:从源点开始到达该顶点的最长路径长度。

    ②V的最迟发生时间:在不推迟整个工期的前提下,事件V允许的最晚发生时间。

    3.疑难问题及解决方案(如果有的话,不求多但求精。可包含编程题,可只包含无解决方案的疑难问题)

    这题直接用单源最短路径就可实现,但开始时却一直在图不连通的测试点过不去。后来发现只要输出前再遍历一次,判断每个节点都无相连顶点即可。

  • 相关阅读:
    flutter doctor出现问题 [!] Android toolchain
    CSS中的cursor属性
    致蝙蝠侠阿卡姆三部曲——最伟大的改编游戏
    ajax的使用:例题、ajax的数据处理
    用ajax对数据进行删除和查看
    ThinkPhp框架:验证码功能
    ThinkPhp框架:父类及表单验证
    ThinkPhp框架:分页查询和补充框架知识
    ThinkPhp框架对“数据库”的基本操作
    ThinkPHP框架知识的注意点
  • 原文地址:https://www.cnblogs.com/jmuchenyunfei/p/12904034.html
Copyright © 2011-2022 走看看