Given an unsorted array of integers, find the length of longest increasing subsequence.
For example,
Given [10, 9, 2, 5, 3, 7, 101, 18]
,
The longest increasing subsequence is [2, 3, 7, 101]
, therefore the length is 4
. Note that there may be more than one LIS combination, it is only necessary for you to return the length.
Your algorithm should run in O(n2) complexity.
Follow up: Could you improve it to O(n log n) time complexity?
Credits:
Special thanks to @pbrother for adding this problem and creating all test cases.
求数组的最长递增子序列。经典dp问题,类似Longest Common Subsequence。 这里其实也有O(nlogn)的方法 用binary search 。这个问题一开始可以被分解为recursive的子问题,一步一步优化就可以得到带有memorization的iterative解法。初始化dp[i] = 1,即一个元素的递增序列。 假设以i - 1结尾的subarray里的LIS为dp[i - 1],那么我们要求以i结尾的subarray里的LIS,dp[i]的时候,要把这个新的元素和之前所有的元素进行比较,同时逐步比较dp[j] + 1与dp[i],假如发现更长的序列,我们则更新dp[i] = dp[j] + 1,继续增加j进行比较。当i之前的元素全部便利完毕以后,我们得到了当前以i结尾的subarray里的LIS,就是dp[i]。
Time Complexity - O(n2), Space Complexity - O(n2)。
public class Solution { public int lengthOfLIS(int[] nums) { int max = 0; if(nums == null || nums.length == 0) return max; int n = nums.length; int[] dp = new int[n]; for(int i = 0; i < n; i++){ dp[i] = 1; for(int j = 0 ; j < i ; j++){ if(nums[i] > nums[j] && dp[j]+1 > dp[i]) dp[i] = dp[j]+1; } max = Math.max(max, dp[i]); } return max; } }