zoukankan      html  css  js  c++  java
  • 次小生成树 判断 unique MST

    Given a connected undirected graph, tell if its minimum spanning tree is unique. 

    Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties: 
    1. V' = V. 
    2. T is connected and acyclic. 

    Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'. 

    Input

    The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

    Output

    For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

    Sample Input

    2
    3 3
    1 2 1
    2 3 2
    3 1 3
    4 4
    1 2 2
    2 3 2
    3 4 2
    4 1 2
    

    Sample Output

    3
    Not Unique!
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<queue>
    #include<cstring>
    #include<cmath>
    #include<vector>
    #include<iomanip>
    #include<iostream>
    using namespace std;
    #define MAXN 101
    #define INF 0x3f3f3f3f
    /*
    判断最小生成树是否唯一。
    求次小生成树,若两个权值相等说明not unique
    次小生成树算法,在prim()算法求解的时候,求出MST中u到v最大边权值
    ,然后用不在MST中的边依次枚举取最小值
    */
    int g[MAXN][MAXN],Max[MAXN][MAXN],lowcost[MAXN],pre[MAXN],n,m,t;
    bool used[MAXN][MAXN],been[MAXN];
    int Prim()
    {
        int ret = 0;
        memset(been,false,sizeof(been));
        memset(Max,0,sizeof(Max));
        memset(used,false,sizeof(used));
        been[1] = true;
        pre[1] = -1;
        for(int i=2;i<=n;i++)
        {
            pre[i] = 1;
            lowcost[i] = g[1][i];
        }
        lowcost[1] = 0;
        for(int i=1;i<n;i++)
        {
            int minc = INF,k =- 1;
            for(int j=1;j<=n;j++)
            {
                if(!been[j]&&lowcost[j]<minc)
                {
                    minc = lowcost[j];
                    k = j;
                }
            }
            if(k==-1) return -1;
            been[k] = true;
            ret+=minc;
            used[k][pre[k]] = used[pre[k]][k] = true;
            for(int j=1;j<=n;j++)
            {
                if(been[j])
                    Max[j][k] = Max[k][j] = max(Max[j][pre[k]],lowcost[k]);
                if(!been[j]&&lowcost[j]>g[k][j])
                {
                    lowcost[j] = g[k][j];
                    pre[j] = k;
                }
            }
        }
        return ret;
    }
    int cixiao(int ans)
    {
        int tmp = INF;
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
            {
                if(!used[i][j]&&g[i][j]!=INF)
                    tmp = min(tmp,ans-Max[i][j]+g[i][j]);
            }
        if(tmp==INF)
            return -1;
        return tmp;
    }
    int main()
    {
        cin>>t;
        while(t--)
        {
            cin>>n>>m;
            for(int i=1;i<=n;i++)
            {
                for(int j=1;j<=n;j++)
                    g[i][j] = INF;
            }
            int x,y,d;
            for(int t=0;t<m;t++)
            {
                cin>>x>>y>>d;
                g[x][y] = g[y][x] = d;
            }
            int ans = Prim();
            int tmp = cixiao(ans);
            if(tmp==ans||ans==-1)
                cout<<"Not Unique!
    ";
            else
                cout<<ans<<endl;
        }
        return 0;
    }
  • 相关阅读:
    BZOJ2208 [Jsoi2010]连通数[缩点/Floyd传递闭包+bitset优化]
    loj515 「LibreOJ β Round #2」贪心只能过样例[bitset+bool背包]
    BZOJ3331 [BeiJing2013]压力[圆方树+树上差分]
    BZOJ4010 [HNOI2015]菜肴制作[拓扑排序+贪心]
    BZOJ2140 稳定婚姻[强连通分量]
    hdu4612 Warm up[边双连通分量缩点+树的直径]
    BZOJ2730 [HNOI2012]矿场搭建[点双连通分量]
    BZOJ3887 [Usaco2015 Jan]Grass Cownoisseur[缩点]
    BZOJ1016 [JSOI2008]最小生成树计数[最小生成树+搜索]
    hdu4786 Fibonacci Tree[最小生成树]【结论题】
  • 原文地址:https://www.cnblogs.com/joeylee97/p/6593470.html
Copyright © 2011-2022 走看看