zoukankan      html  css  js  c++  java
  • HDU RSA 扩展欧几里得

    Problem Description
    RSA is one of the most powerful methods to encrypt data. The RSA algorithm is described as follow:

    > choose two large prime integer p, q
    > calculate n = p × q, calculate F(n) = (p - 1) × (q - 1)
    > choose an integer e(1 < e < F(n)), making gcd(e, F(n)) = 1, e will be the public key
    > calculate d, making d × e mod F(n) = 1 mod F(n), and d will be the private key

    You can encrypt data with this method :

    C = E(m) = me mod n

    When you want to decrypt data, use this method :

    M = D(c) = cd mod n

    Here, c is an integer ASCII value of a letter of cryptograph and m is an integer ASCII value of a letter of plain text.

    Now given p, q, e and some cryptograph, your task is to "translate" the cryptograph into plain text.
     
    Input
    Each case will begin with four integers p, q, e, l followed by a line of cryptograph. The integers p, q, e, l will be in the range of 32-bit integer. The cryptograph consists of l integers separated by blanks. 
     
    Output
    For each case, output the plain text in a single line. You may assume that the correct result of plain text are visual ASCII letters, you should output them as visualable letters with no blank between them.
     
    Sample Input
    101 103 7 11 7716 7746 7497 126 8486 4708 7746 623 7298 7357 3239
     
    Sample Output
    I-LOVE-ACM.
     
    Author
    JGShining(极光炫影)
     
    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    using namespace std;
    typedef long long LL;
    /*
    题目要求
    > calculate n = p × q, calculate F(n) = (p - 1) × (q - 1)
    > choose an integer e(1 < e < F(n)), making gcd(e, F(n)) = 1, e will be the public key
    > calculate d, making d × e mod F(n) = 1 mod F(n), and d will be the private key
    知道 P Q E
    gcd(a,b) == 1  等价于 存在x,y  a*x+b*y==1
    存在x,y 
    e*x + F(n)*y = 1 
    d*e%F(n) = 1%F(n)
    d*e + F(n)*y = 1; 通过求逆元方法解出 d 即可
    */
    LL p,q,e,l;
    LL ex_gcd(LL a,LL b,LL &x,LL &y)
    {
        if(b==0)
        {
            x = 1;
            y = 0;
            return a;
        }
        LL ans = ex_gcd(b,a%b,x,y);
        LL tmp = x;
        x = y;
        y = tmp - a/b*x;
        return ans;
    }
    LL cal(LL a,LL b,LL c)
    {
        LL x=0,y=0;
        LL gcd = ex_gcd(a,b,x,y);
        if(c%gcd!=0) return -1;
        x *= c/gcd;
        b /= gcd;
        if(b<0) b = -b;
        LL ans = x%b;
        if(ans<0) ans+=b;
        return ans;
    }
    int main()
    {
        while(scanf("%lld%lld%lld%lld",&p,&q,&e,&l)!=EOF)
        {
            LL fn = (p-1)*(q-1),n = p*q;
            LL d = cal(e,fn,1);
            LL tmp,ans;
            for(int i=0;i<l;i++)
            {
                scanf("%lld",&tmp);
                tmp %= n;
                ans = 1;
                for(int j=0;j<d;j++)
                    ans = (ans*tmp)%n;
                printf("%c",ans%n);
            }
            printf("
    ");
        }
    }
  • 相关阅读:
    二、JAVA通过JDBC连接mysql数据库(操作)
    一、JAVA通过JDBC连接mysql数据库(连接)
    while loading persisted sessions [java.io.EOFException]的三种解决办法!
    8大排序算法的java实现--做个人收藏
    数据库索引实现原理—B_TREE
    数据库查询优化方法
    webservice原理及基于cxf开发的基本流程
    Java多线程之Thread、Runnable、Callable及线程池
    随机数问题--已知有个Random7()的函数,返回1到7随机自然数,让利用这个Random7()构造Random10()随机1~10.
    深入Java—String源代码
  • 原文地址:https://www.cnblogs.com/joeylee97/p/6658240.html
Copyright © 2011-2022 走看看