zoukankan      html  css  js  c++  java
  • 网络流入门 Drainage Ditches

    Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other)
    Total Submission(s) : 51   Accepted Submission(s) : 33
    Problem Description
    Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 
    Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
    Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 
     
    Input
    The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.
     
    Output
    For each case, output a single integer, the maximum rate at which water may emptied from the pond. 
     
    Sample Input
    5 4
    1 2 40
    1 4 20
    2 4 20
    2 3 30
    3 4 10
     
    Sample Output
    50
     
    Source
    USACO 93
    KE 算法
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<cstring>
    #include<sstream>
    #include<algorithm>
    #include<queue>
    #include<deque>
    #include<iomanip>
    #include<vector>
    #include<cmath>
    #include<map>
    #include<stack>
    #include<set>
    #include<fstream>
    #include<memory>
    #include<list>
    #include<string>
    using namespace std;
    typedef long long LL;
    typedef unsigned long long ULL;
    #define MAXN  1100
    #define L 31
    #define INF 1000000009
    #define eps 0.00000001
    /*
    最大流问题
    */
    int g[MAXN][MAXN], path[MAXN], flow[MAXN], start, End, n, m;
    int bfs()
    {
        queue<int> q;
        q.push(start);
        memset(path, -1, sizeof(path));
        path[start] = 0;
        flow[start] = INF;
        while (!q.empty())
        {
            int tmp = q.front();
            q.pop();
            if (tmp == End) break;
            for (int i = 1; i <= n; i++)
            {
                if (i != start&&g[tmp][i] && path[i] == -1)
                {
                    flow[i] = min(g[tmp][i], flow[tmp]);
                    path[i] = tmp;
                    q.push(i);
                }
            }
        }
        if (path[End] == -1) return -1;
        return flow[End];
    }
    int EK()
    {
        int max_flow = 0, now, step;
        while ((step = bfs())!= -1)
        {
            max_flow += step;
            now = End;
            while (now != start)
            {
                int pre = path[now];
                g[pre][now] -= step;
                g[now][pre] += step;
                now = pre;
            }
        }
        return max_flow;
    }
    int main()
    {
        while (scanf("%d%d", &m, &n) != EOF)
        {
            memset(g, 0, sizeof(g));
            int f, t, d;
            for (int i = 0; i < m; i++)
            {
                scanf("%d%d%d", &f, &t, &d);
                g[f][t] += d;
            }
            start = 1, End = n;
            printf("%d
    ", EK());
        }
    }
  • 相关阅读:
    Atitit 图像处理30大经典算法attilax总结
    Atitit 图像清晰度 模糊度 检测 识别 评价算法 源码实现attilax总结
    Atitit  rgb yuv  hsv HSL 模式和 HSV(HSB) 图像色彩空间的区别
    Atitit  从 RGB 到 HSL 或 HSV 的转换
    Atitit 图像清晰度 模糊度 检测 识别 评价算法 原理
    Atitit 修改密码的功能流程设计 attilax总结
    atitit 点播系统 概览 v2 qb1.docx
    Atitit dsl exer v3 qb3 新特性
    atitit.TokenService v3 qb1  token服务模块的设计 新特性.docx
    Atitit 异常机制与异常处理的原理与概论
  • 原文地址:https://www.cnblogs.com/joeylee97/p/6852440.html
Copyright © 2011-2022 走看看