zoukankan      html  css  js  c++  java
  • Fast Matrix Calculation 矩阵快速幂

    One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learning something about matrix, so he decided to make a crazy problem for her. 

    Bob has a six-faced dice which has numbers 0, 1, 2, 3, 4 and 5 on each face. At first, he will choose a number N (4 <= N <= 1000), and for N times, he keeps throwing his dice for K times (2 <=K <= 6) and writes down its number on the top face to make an N*K matrix A, in which each element is not less than 0 and not greater than 5. Then he does similar thing again with a bit difference: he keeps throwing his dice for N times and each time repeat it for K times to write down a K*N matrix B, in which each element is not less than 0 and not greater than 5. With the two matrix A and B formed, Alice’s task is to perform the following 4-step calculation. 

    Step 1: Calculate a new N*N matrix C = A*B. 
    Step 2: Calculate M = C^(N*N). 
    Step 3: For each element x in M, calculate x % 6. All the remainders form a new matrix M’. 
    Step 4: Calculate the sum of all the elements in M’. 

    Bob just made this problem for kidding but he sees Alice taking it serious, so he also wonders what the answer is. And then Bob turn to you for help because he is not good at math.

    InputThe input contains several test cases. Each test case starts with two integer N and K, indicating the numbers N and K described above. Then N lines follow, and each line has K integers between 0 and 5, representing matrix A. Then K lines follow, and each line has N integers between 0 and 5, representing matrix B. 

    The end of input is indicated by N = K = 0.OutputFor each case, output the sum of all the elements in M’ in a line.Sample Input

    4 2
    5 5
    4 4
    5 4
    0 0
    4 2 5 5
    1 3 1 5
    6 3
    1 2 3
    0 3 0
    2 3 4
    4 3 2
    2 5 5
    0 5 0
    3 4 5 1 1 0
    5 3 2 3 3 2
    3 1 5 4 5 2
    0 0

    Sample Output

    14
    56



    C = A*B
    C^1000 = A*(B*A)^999*B

    简化到k*k上的矩阵计算方便
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<cstring>
    #include<sstream>
    #include<algorithm>
    #include<queue>
    #include<deque>
    #include<iomanip>
    #include<vector>
    #include<cmath>
    #include<map>
    #include<stack>
    #include<set>
    #include<fstream>
    #include<memory>
    #include<list>
    #include<string>
    using namespace std;
    typedef long long  LL;
    typedef unsigned long long ULL;
    #define MAXN 1007
    #define MOD 10000007
    #define INF 1000000009
    const double eps = 1e-9;
    int n, k;
    struct Mat
    {
    	int a[10][10];
    	Mat()
    	{
    		memset(a, 0, sizeof(a));
    	}
    	Mat operator * (const Mat& rhs)const
    	{
    		Mat ret;
    		for (int i = 0; i < k; i++)
    		{
    			for (int j = 0; j < k; j++)
    			{
    				if (a[i][j])
    				{
    					for (int t = 0; t < k; t++)
    					{
    						ret.a[i][t] = (ret.a[i][t] + a[i][j] * rhs.a[j][t]) % 6;
    					}
    				}
    			}
    		}
    		return ret;
    	}
    };
    Mat fpow(Mat a, int b)
    {
    	Mat ret;
    	for (int i = 0; i < k; i++)
    		ret.a[i][i] = 1;
    	while (b != 0)
    	{
    		if (b & 1)
    			ret = a*ret;
    		a = a*a;
    		b /= 2;
    	}
    	return ret;
    }
    int m1[MAXN][7], m2[7][MAXN], ans[MAXN][MAXN], tmp[MAXN][MAXN];
    int main()
    {
    	while (scanf("%d%d", &n, &k), n + k)
    	{
    		for (int i = 0; i < n; i++)
    			for (int j = 0; j < k; j++)
    				scanf("%d", &m1[i][j]);
    		for (int i = 0; i < k; i++)
    			for (int j = 0; j < n; j++)
    				scanf("%d", &m2[i][j]);
    		Mat M;
    		for (int i = 0; i < k; i++)
    		{
    			for (int j = 0; j < k; j++)
    			{
    				for (int t = 0; t < n; t++)
    				{
    					M.a[i][j] = (M.a[i][j] + m2[i][t] * m1[t][j])%6;
    				}
    			}
    		}
    		M = fpow(M, n*n - 1);
    		memset(tmp, 0, sizeof(tmp));
    		memset(ans, 0, sizeof(ans));
    		for (int i = 0; i < n; i++)
    		{
    			for (int j = 0; j < k; j++)
    			{
    				for (int t = 0; t < k; t++)
    					tmp[i][j] = (tmp[i][j] + m1[i][t] * M.a[t][j])%6;
    			}
    		}
    		for (int i = 0; i < n; i++)
    		{
    			for (int j = 0; j < n; j++)
    			{
    				for (int t = 0; t < k; t++)
    					ans[i][j] = (ans[i][j] + tmp[i][t] * m2[t][j])%6;
    			}
    		}
    		int res = 0;
    		for (int i = 0; i < n; i++)
    			for (int j = 0; j < n; j++)
    				res += ans[i][j]%6;
    		printf("%d
    ", res);
    	}
    }
    
     
  • 相关阅读:
    拓端tecdat|R语言投资组合优化求解器:条件约束最优化、非线性规划求解
    拓端tecdat|R语言多元时间序列滚动预测:ARIMA、回归、ARIMAX模型分析
    拓端tecdat|R语言聚类有效性:确定最优聚类数分析IRIS鸢尾花数据和可视化
    拓端tecdat|R语言k-means聚类、层次聚类、主成分(PCA)降维及可视化分析鸢尾花iris数据集
    【拓端tecdat】R语言用Hessian-free 、Nelder-Mead优化方法对数据进行参数估计
    springcloud之zuul网关服务并携带头信息转发token
    windows环境搭建Vue开发环境
    JVM之top+jstack分析cpu过高原因
    JVM调优之jstack找出最耗cpu的线程并定位代码
    用自顶向下、逐步细化的方法进行以下算法的设计: 1. 输出1900---2000年中是软黏的年份,符合下面两个条件之一的年份是闰年:
  • 原文地址:https://www.cnblogs.com/joeylee97/p/7250405.html
Copyright © 2011-2022 走看看