zoukankan      html  css  js  c++  java
  • Fast Matrix Calculation 矩阵快速幂

    One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learning something about matrix, so he decided to make a crazy problem for her. 

    Bob has a six-faced dice which has numbers 0, 1, 2, 3, 4 and 5 on each face. At first, he will choose a number N (4 <= N <= 1000), and for N times, he keeps throwing his dice for K times (2 <=K <= 6) and writes down its number on the top face to make an N*K matrix A, in which each element is not less than 0 and not greater than 5. Then he does similar thing again with a bit difference: he keeps throwing his dice for N times and each time repeat it for K times to write down a K*N matrix B, in which each element is not less than 0 and not greater than 5. With the two matrix A and B formed, Alice’s task is to perform the following 4-step calculation. 

    Step 1: Calculate a new N*N matrix C = A*B. 
    Step 2: Calculate M = C^(N*N). 
    Step 3: For each element x in M, calculate x % 6. All the remainders form a new matrix M’. 
    Step 4: Calculate the sum of all the elements in M’. 

    Bob just made this problem for kidding but he sees Alice taking it serious, so he also wonders what the answer is. And then Bob turn to you for help because he is not good at math.

    InputThe input contains several test cases. Each test case starts with two integer N and K, indicating the numbers N and K described above. Then N lines follow, and each line has K integers between 0 and 5, representing matrix A. Then K lines follow, and each line has N integers between 0 and 5, representing matrix B. 

    The end of input is indicated by N = K = 0.OutputFor each case, output the sum of all the elements in M’ in a line.Sample Input

    4 2
    5 5
    4 4
    5 4
    0 0
    4 2 5 5
    1 3 1 5
    6 3
    1 2 3
    0 3 0
    2 3 4
    4 3 2
    2 5 5
    0 5 0
    3 4 5 1 1 0
    5 3 2 3 3 2
    3 1 5 4 5 2
    0 0

    Sample Output

    14
    56



    C = A*B
    C^1000 = A*(B*A)^999*B

    简化到k*k上的矩阵计算方便
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<cstring>
    #include<sstream>
    #include<algorithm>
    #include<queue>
    #include<deque>
    #include<iomanip>
    #include<vector>
    #include<cmath>
    #include<map>
    #include<stack>
    #include<set>
    #include<fstream>
    #include<memory>
    #include<list>
    #include<string>
    using namespace std;
    typedef long long  LL;
    typedef unsigned long long ULL;
    #define MAXN 1007
    #define MOD 10000007
    #define INF 1000000009
    const double eps = 1e-9;
    int n, k;
    struct Mat
    {
    	int a[10][10];
    	Mat()
    	{
    		memset(a, 0, sizeof(a));
    	}
    	Mat operator * (const Mat& rhs)const
    	{
    		Mat ret;
    		for (int i = 0; i < k; i++)
    		{
    			for (int j = 0; j < k; j++)
    			{
    				if (a[i][j])
    				{
    					for (int t = 0; t < k; t++)
    					{
    						ret.a[i][t] = (ret.a[i][t] + a[i][j] * rhs.a[j][t]) % 6;
    					}
    				}
    			}
    		}
    		return ret;
    	}
    };
    Mat fpow(Mat a, int b)
    {
    	Mat ret;
    	for (int i = 0; i < k; i++)
    		ret.a[i][i] = 1;
    	while (b != 0)
    	{
    		if (b & 1)
    			ret = a*ret;
    		a = a*a;
    		b /= 2;
    	}
    	return ret;
    }
    int m1[MAXN][7], m2[7][MAXN], ans[MAXN][MAXN], tmp[MAXN][MAXN];
    int main()
    {
    	while (scanf("%d%d", &n, &k), n + k)
    	{
    		for (int i = 0; i < n; i++)
    			for (int j = 0; j < k; j++)
    				scanf("%d", &m1[i][j]);
    		for (int i = 0; i < k; i++)
    			for (int j = 0; j < n; j++)
    				scanf("%d", &m2[i][j]);
    		Mat M;
    		for (int i = 0; i < k; i++)
    		{
    			for (int j = 0; j < k; j++)
    			{
    				for (int t = 0; t < n; t++)
    				{
    					M.a[i][j] = (M.a[i][j] + m2[i][t] * m1[t][j])%6;
    				}
    			}
    		}
    		M = fpow(M, n*n - 1);
    		memset(tmp, 0, sizeof(tmp));
    		memset(ans, 0, sizeof(ans));
    		for (int i = 0; i < n; i++)
    		{
    			for (int j = 0; j < k; j++)
    			{
    				for (int t = 0; t < k; t++)
    					tmp[i][j] = (tmp[i][j] + m1[i][t] * M.a[t][j])%6;
    			}
    		}
    		for (int i = 0; i < n; i++)
    		{
    			for (int j = 0; j < n; j++)
    			{
    				for (int t = 0; t < k; t++)
    					ans[i][j] = (ans[i][j] + tmp[i][t] * m2[t][j])%6;
    			}
    		}
    		int res = 0;
    		for (int i = 0; i < n; i++)
    			for (int j = 0; j < n; j++)
    				res += ans[i][j]%6;
    		printf("%d
    ", res);
    	}
    }
    
     
  • 相关阅读:
    Css3 常见鼠标滑过效果集合
    HTML5 Media事件
    HTML 5 Audio/Video DOM buffered 属性
    Cocos2d-x 3.X 事件分发机制
    在 WPF 程序中使用 MVVM 模式
    Windows Phone 版 Cocos2d-x 程序的结构
    转载:Cocos2D-x 游戏接入 Windows 设备所需做的六件事
    使用 Cocos2d-x 3.1.1 创建 Windows Phone 8 游戏开发环境
    转载:Windows Phone 8.1 投影我的屏幕使用教程
    NHibernate 中使用 nvarchar(max) 类型
  • 原文地址:https://www.cnblogs.com/joeylee97/p/7250405.html
Copyright © 2011-2022 走看看