Given a sequence A with length n,count how many quadruple (a,b,c,d) satisfies: a≠b≠c≠d,1≤a<b≤n,1≤c<d≤n,Aa<Ab,Ac>Ada≠b≠c≠d,1≤a<b≤n,1≤c<d≤n,Aa<Ab,Ac>Ad.
InputThe input consists of multiple test cases.
Each test case begin with an integer n in a single line.
The next line contains n integers A1,A2⋯AnA1,A2⋯An.
1≤n≤500001≤n≤50000
0≤Ai≤1e90≤Ai≤1e9OutputFor each test case,output a line contains an integer.Sample Input
4 2 4 1 3 4 1 2 3 4
Sample Output
1 0
因为只考虑相对大小关系,所以先将数据离散化,然后用树状数组记录前后比i大或者比i小的元素,求出所有个数,分类讨论重合情况,减去重合的元素
#include<iostream> #include<cstdio> #include<cmath> #include<cstring> #include<sstream> #include<algorithm> #include<queue> #include<vector> #include<cmath> #include<map> #include<stack> #include<fstream> #include<set> #include<memory> #include<bitset> #include<string> #include<functional> using namespace std; typedef long long LL; #define MAXN 500009 LL pre_max[MAXN], pre_min[MAXN], post_max[MAXN], post_min[MAXN]; LL a[MAXN], tmp[MAXN]; LL T[MAXN], n; LL lowbit(LL x) { return x&(-x); } void update(LL x) { while (x <= MAXN) { T[x] += 1; x += lowbit(x); } } LL getsum(LL x) { LL sum = 0; while (x > 0) { sum += T[x]; x -= lowbit(x); } return sum; } int main() { while (scanf("%lld", &n) != EOF) { memset(T, 0, sizeof(T)); for (LL i = 1; i <= n; i++) scanf("%lld", &a[i]); memcpy(tmp, a, sizeof(a)); sort(tmp + 1, tmp + n + 1); LL len = unique(tmp + 1, tmp + n + 1) - tmp; for (LL i = 1; i <= n; i++) a[i] = lower_bound(tmp + 1, tmp + len + 1, a[i]) - tmp; for (LL i = 1; i <= n; i++) { update(a[i]); pre_min[i] = getsum(a[i] - 1); pre_max[i] = i - getsum(a[i]); } LL sum1, sum2; sum1 = sum2 = 0; for (int i = 1; i <= n; i++) { post_min[i] = getsum(a[i] - 1) - pre_min[i]; post_max[i] = n - getsum(a[i]) - pre_max[i]; sum1 += post_min[i]; sum2 += post_max[i]; } LL ans = sum1*sum2; for (int i = 1; i <= n; i++) { ans -= pre_min[i] * pre_max[i]; ans -= pre_min[i] * post_min[i]; ans -= post_max[i] * pre_max[i]; ans -= post_max[i] * post_min[i]; } printf("%lld ", ans); } }