zoukankan      html  css  js  c++  java
  • Devu and Flowers lucas定理+容斥原理

    Devu wants to decorate his garden with flowers. He has purchased n boxes, where the i-th box contains fi flowers. All flowers in a single box are of the same color (hence they are indistinguishable). Also, no two boxes have flowers of the same color.

    Now Devu wants to select exactly s flowers from the boxes to decorate his garden. Devu would like to know, in how many different ways can he select the flowers from each box? Since this number may be very large, he asks you to find the number modulo (109 + 7).

    Devu considers two ways different if there is at least one box from which different number of flowers are selected in these two ways.

    Input

    The first line of input contains two space-separated integers n and s (1 ≤ n ≤ 20, 0 ≤ s ≤ 1014).

    The second line contains n space-separated integers f1, f2, ... fn (0 ≤ fi ≤ 1012).

    Output

    Output a single integer — the number of ways in which Devu can select the flowers modulo (109 + 7).

    Example

    Input
    2 3
    1 3
    Output
    2
    Input
    2 4
    2 2
    Output
    1
    Input
    3 5
    1 3 2
    Output
    3

    Note

    Sample 1. There are two ways of selecting 3 flowers: {1, 2} and {0, 3}.

    Sample 2. There is only one way of selecting 4 flowers: {2, 2}.

    Sample 3. There are three ways of selecting 5 flowers: {1, 2, 2}, {0, 3, 2}, and {1, 3, 1}.

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #define ll long long
    #define mod 1000000007
    using namespace std;
    inline ll read()
    {
        ll x=0,f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    ll qpow(ll a,ll b)
    {
        ll ans=1;
        while(b)
        {
            if(b&1)ans=(ans*a)%mod;
            a=(a*a)%mod;
            b>>=1;
        }
        return ans;
    }
    ll getc(ll a,ll b)
    {
        if(a<b)return 0;
        if(b>a-b)b=a-b;
        ll s1=1,s2=1;
        for(ll i=0;i<b;i++)
        {
            s1=s1*(a-i)%mod;
            s2=s2*(i+1)%mod;
        }
        return s1*qpow(s2,mod-2)%mod;
    }
    ll lucas(ll n,ll k)
    {
        if(k==0)return 1;
        return getc(n%mod,k%mod)*lucas(n/mod,k/mod)%mod;
    }
    int n;
    ll s,f[25];
    ll solve()
    {
        ll ans=0;
        for(int i=0;i<(1<<n);i++)
        {
            ll sign=1,sum=s;
            for(int j=0;j<n;j++)
            {
                if(i&(1<<j))
                {
                    sum-=f[j]+1;
                    sign*=-1;
                }
            }
            if(sum<0)continue;
            ans+=sign*lucas(sum+n-1,n-1);
            ans%=mod;
        }
        return (ans+mod)%mod;
    }
    int main()
    {
        cin>>n>>s;
        for(int i=0;i<n;i++)
            cin>>f[i];
        printf("%lld
    ",solve());
        return 0;
    }
  • 相关阅读:
    CPU理论,平均负载和CPU密集型场景
    Dubbo和Zookeeper
    nmon问题定位和LoadRunner结果分析
    混合场景,面向目标的场景和nmon监控
    性能测试场景的学习:controller
    java vuser协议
    LoadRunner脚本开发:操作数据库(六)
    LoadRunner脚本开发:手写SOAP脚本的三种方法(五)
    jmeter脚本开发:jmeter工具的学习(二)
    子Fragment获取父Fragment
  • 原文地址:https://www.cnblogs.com/joeylee97/p/7426659.html
Copyright © 2011-2022 走看看