zoukankan      html  css  js  c++  java
  • Mayor's posters POJ

    The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules: 
    • Every candidate can place exactly one poster on the wall. 
    • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown). 
    • The wall is divided into segments and the width of each segment is one byte. 
    • Each poster must completely cover a contiguous number of wall segments.

    They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. 
    Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall. 

    Input

    The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers l i and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= l i <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered l i, l i+1 ,... , ri.

    Output

    For each input data set print the number of visible posters after all the posters are placed. 

    The picture below illustrates the case of the sample input. 

    Sample Input

    1
    5
    1 4
    2 6
    8 10
    3 4
    7 10
    

    Sample Output

    4

    #include<iostream>
    #include<algorithm>
    #include<cstdio>
    #include<vector>
    #include<string>
    #include<cstring>
    using namespace std;
    typedef long long LL;
    const int MAXN = 10010;
    struct post
    {
        LL l,r;
    }p[MAXN];
    int x[MAXN<<1];
    int H[10000005];
    struct node
    {
        LL l,r;
        bool laz;//标记当前是否被完全覆盖
    }T[MAXN*8+3];
    
    void pushup(LL p)
    {
        if(T[p*2].laz&&T[p*2+1].laz)
            T[p].laz = true;
        /*else
            T[p].laz = false;*/
    }
    void build(LL p,LL l,LL r)
    {
        T[p].l = l,T[p].r = r;
        T[p].laz = false;
        if(l==r) return ;
        int mid = (l + r)/2;
        build(p*2,l,mid);
        build(p*2+1,mid+1,r);
    }
    bool update(LL x,LL l,LL r)
    {
        if(T[x].laz) return false;
        if(l == T[x].l && r == T[x].r)
        {
            T[x].laz = true;
            return true;
        }
        //pushdown(x);
        LL mid = (T[x].l + T[x].r)/2;
        bool R;
        if(r<=mid)
            R =  update(x*2,l,r);
        else if(l>mid)
            R = update(x*2+1,l,r);
        else
        {
            bool r1 = update(x*2,l,mid);
            bool r2 = update(x*2+1,mid+1,r);
            R =  r1||r2;
        }
        if(T[x*2].laz&&T[x*2+1].laz)
            T[x].laz = true;
        return R;
    }
    int main()
    {
        int n;
        int T;
        scanf("%d",&T);
        while(T--)
        {
            int cnt = 0;
            scanf("%d",&n);
            for(int i=0;i<n;i++)
            {
                scanf("%d%d",&p[i].l,&p[i].r);
                x[cnt++] = p[i].l;
                x[cnt++] = p[i].r;
            }
            sort(x,x+cnt);
            cnt = unique(x,x+cnt)-x;
            for(int i= 0;i<cnt;i++)
                H[x[i]] = i;
            build(1,0,cnt-1);
            int ans = 0;
            for(int i = n-1; i>=0; i--)
                if(update(1,H[p[i].l],H[p[i].r]))
                    ans++;
            printf("%d
    ", ans);
        }
    }
  • 相关阅读:
    js常用设计模式实现(一)单例模式
    js深入(四)万脸懵圈的this指向
    js深入(三)作用域链与闭包
    js深入(二)函数的执行与上下文
    js深入(一)从原型理解原型链
    初识markdown
    git stash 用法
    见的如T、E、K、V等形式的参数常用于表示泛型形参
    SystemBarTint是两年以前的一个开源库,现在我们依然可以用它很方便的给应用加上。
    android:supportsRtl="true" 属性
  • 原文地址:https://www.cnblogs.com/joeylee97/p/7426837.html
Copyright © 2011-2022 走看看