zoukankan      html  css  js  c++  java
  • Less Time, More profit 最大权闭合子图(最大流最小割)

    The city planners plan to build N plants in the city which has M shops. 

    Each shop needs products from some plants to make profit of proiproi units. 

    Building ith plant needs investment of payipayi units and it takes titi days. 

    Two or more plants can be built simultaneously, so that the time for building multiple plants is maximum of their periods(titi). 

    You should make a plan to make profit of at least L units in the shortest period. 

    InputFirst line contains T, a number of test cases. 

    For each test case, there are three integers N, M, L described above. 

    And there are N lines and each line contains two integers payipayi, titi(1<= i <= N). 

    Last there are M lines and for each line, first integer is proiproi, and there is an integer k and next k integers are index of plants which can produce material to make profit for the shop. 

    1 <= T <= 30 
    1 <= N, M <= 200 
    1L,ti10000000001≤L,ti≤1000000000 
    1payi,proi300001≤payi,proi≤30000 
    OutputFor each test case, first line contains a line “Case #x: t p”, x is the number of the case, t is the shortest period and p is maximum profit in t hours. You should minimize t first and then maximize p. 

    If this plan is impossible, you should print “Case #x: impossible” 
    Sample Input

    2
    
    1 1 2
    1 5
    3 1 1
    
    1 1 3
    1 5
    3 1 1

    Sample Output

    Case #1: 5 2
    Case #2: impossible
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<cstring>
    #include<sstream>
    #include<algorithm>
    #include<queue>
    #include<deque>
    #include<iomanip>
    #include<vector>
    #include<cmath>
    #include<map>
    #include<stack>
    #include<set>
    #include<fstream>
    #include<memory>
    #include<list>
    #include<string>
    using namespace std;
    typedef long long LL;
    typedef unsigned long long ULL;
    #define MAXN 405
    #define L 31
    #define INF 1000000009
    #define eps 0.00000001
    #define sf(a) scanf("%lld",&a)
    struct plant
    {
        LL pay, time;
        LL id;
        bool operator<(const plant& rhs) const
        {
            return time < rhs.time;
        }
    };
    struct shop
    {
        LL cnt, time, pro;
        LL pl[MAXN];
    };
    shop s[MAXN];
    plant p[MAXN];
    LL g[MAXN << 1][MAXN << 1];
    LL level[MAXN<<1];
    LL T, n, m, l, st, ed, ans, tmp;
    bool bfs()
    {
        memset(level, -1, sizeof(level));
        level[st] = 0;
        queue<LL> q;
        q.push(st);
        while (!q.empty())
        {
            LL f = q.front();
            q.pop();
            for (LL i = 1; i <= ed; i++)
            {
                if (level[i] == -1 && g[f][i] > 0)
                {
                    level[i] = level[f] + 1;
                    q.push(i);
                }
            }
        }
        return level[ed] > 0;
    }
    LL dinic(LL k, LL low)
    {
        if (k == ed)return low;
        LL a;
        for (LL i = 1; i <= ed; i++)
        {
            if (level[i] == level[k] + 1 && g[k][i] > 0 && (a = dinic(i, min(low, g[k][i]))))
            {
                g[k][i] -= a;
                g[i][k] += a;
                return a;
            }
        }
        return 0;
    }
    void solve()
    {
        ans = 0;
        while (bfs())
        {
            while (tmp = dinic(st, INF))
                ans += tmp;
        }
    }
    int main()
    {
        sf(T);
        for (LL cas = 1; cas <= T; cas++)
        {
            sf(n), sf(m), sf(l);
            for (LL i = 1; i <= n; i++)
            {
                sf(p[i].pay), sf(p[i].time);
                p[i].id = i;
            }
            for (LL i = 1; i <= m; i++)
            {
                sf(s[i].pro);
                sf(s[i].cnt);
                s[i].time = 0;
                for (LL j = 0; j < s[i].cnt; j++)
                {
                    sf(s[i].pl[j]);
                    s[i].time = max(s[i].time, p[s[i].pl[j]].time);
                }
            }
            sort(p + 1, p + 1 + n);
            bool f = false;
            st = n + m + 1, ed = st + 1;
            printf("Case #%lld: ", cas);
            for (LL i = 1; i <= n; i++)
            {
                memset(g, 0, sizeof(g));
                for (LL j = 1; j <= i; j++)
                    g[p[j].id][ed] = p[j].pay;
                LL tot = 0;
                for (LL j = 1; j <= m; j++)
                {
                    if (s[j].time <= p[i].time)
                    {
                        tot += s[j].pro;
                        g[st][j + n] = s[j].pro;
                        for (LL k = 0; k < s[j].cnt; k++)
                            g[j + n][s[j].pl[k]] = INF;
                    }
                }
                solve();
                ans = tot - ans;
                if (ans >= l)
                {
                    printf("%lld %lld
    ", p[i].time, ans);
                    f = true;
                    break;
                }
            }
            if (!f)
                printf("impossible
    ");
        }
    }
  • 相关阅读:
    巧用css实现强制不换行、自动换行、强制换行(转)
    解决IE6最后一行文字溢出
    CSS控制透明度
    中兴ZTEU880刷机
    ADO.NET Entity Framework AtaGlance
    低版本的IE浏览器position:relative跟随滚动条滚动解决方案
    ObjectARX ads_point 和AcGePoint3d 的转化
    ObjectARX代码片段三
    创建AcDb2dPolyline实体
    数据库处理
  • 原文地址:https://www.cnblogs.com/joeylee97/p/7426868.html
Copyright © 2011-2022 走看看