Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
Note: You may not slant the container and n is at least 2.
双指针
一种枚举算法的优化,在具有有序性质的问题上可以优化复杂度,此题题意是在数组中选取两条边和X轴一起组成矩形容器,最多能存储多少水,影响容量的因素有两个: 容器的底(左右两条线段长度之差)和高(左右两条线段长度最小值)。
双指针在数组首尾相向移动, 优化掉大部分的无效计算([3,1,3,3] 这个数组,左右指针分别在首尾,左边的指针向右移动,底和高都会减少,面积显然不会增大,这一步计算可以直接优化掉)
class Solution {
public:
int maxArea(vector<int>& height) {
int ans = 0, l = 0, r = height.size() - 1;
if(!height.empty()) {
ans = max(ans, (r - l) * min(height[l], height[r]));
while(l < r){
if(height[l] < height[r]){
while(l < r && height[l+1] < height[l]){
l++;
}
l++;
}
else {
while(l < r && height[r - 1] < height[r]){
r--;
}
r--;
}
ans = max(ans, (r - l) * min(height[l], height[r]));
}
}
return ans;
}
};