题目:
给你一根长度为n的绳子,请把绳子剪成整数长的m段(m、n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m]。请问k[0]xk[1]x...xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
输入描述
输入一个数 n,意义见题面。(2 <= n <= 60)
输出描述
示例:
输入:8 输出:18
代码:
1 class Solution { 2 public: 3 int cutRope(int number) { 4 if(number == 2) 5 return 1; 6 if(number == 3) 7 return 2; 8 int x = number % 3; 9 int y = number / 3; 10 if(x == 0) 11 return pow(3,y); 12 else if(x == 1) 13 return 2 * 2 * pow(3,y - 1); 14 else 15 return 2 * pow(3, y); 16 } 17 };
我的笔记:
题目分析:
* 先举几个例子,可以看出规律来。
* 4 : 2*2
* 5 : 2*3
* 6 : 3*3
* 7 : 2*2*3 或者4*3
* 8 : 2*3*3
* 9 : 3*3*3
* 10:2*2*3*3 或者4*3*3
* 11:2*3*3*3
* 12:3*3*3*3
* 13:2*2*3*3*3 或者4*3*3*3
*
* 下面是分析:
* 首先判断k[0]到k[m]可能有哪些数字,实际上只可能是2或者3。
* 当然也可能有4,但是4=2*2,我们就简单些不考虑了。
* 5<2*3,6<3*3,比6更大的数字我们就更不用考虑了,肯定要继续分。
* 其次看2和3的数量,2的数量肯定小于3个,为什么呢?因为2*2*2<3*3,那么题目就简单了。
* 直接用n除以3,根据得到的余数判断是一个2还是两个2还是没有2就行了。
* 由于题目规定m>1,所以2只能是1*1,3只能是2*1,这两个特殊情况直接返回就行了。
*
* 乘方运算的复杂度为:O(log n),用动态规划来做会耗时比较多。