zoukankan      html  css  js  c++  java
  • 480. Sliding Window Median

    package LeetCode_480
    
    import java.util.*
    
    /**
     * 480. Sliding Window Median
     * https://leetcode.com/problems/sliding-window-median/description/
     *
     * Median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle value.
    
    Examples:
    [2,3,4] , the median is 3
    [2,3], the median is (2 + 3) / 2 = 2.5
    
    Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right.
    You can only see the k numbers in the window.
    Each time the sliding window moves right by one position.
    Your job is to output the median array for each window in the original array.
    For example,
    Given nums = [1,3,-1,-3,5,3,6,7], and k = 3.
    Window position                Median
    ---------------               -----
    [1  3  -1] -3  5  3  6  7       1
    1 [3  -1  -3] 5  3  6  7       -1
    1  3 [-1  -3  5] 3  6  7       -1
    1  3  -1 [-3  5  3] 6  7       3
    1  3  -1  -3 [5  3  6] 7       5
    1  3  -1  -3  5 [3  6  7]      6
    Therefore, return the median sliding window as [1,-1,-1,3,5,6].
    
    Note:
    You may assume k is always valid, ie: k is always smaller than input array's size for non-empty array.
    Answers within 10^-5 of the actual value will be accepted as correct.
     * */
    class Solution {
    
        //max heap
        val leftHeap = PriorityQueue<Int> { a, b -> b - a }
        //min heap
        val rightHeap = PriorityQueue<Int>()
    
        fun medianSlidingWindow(nums: IntArray, k: Int): DoubleArray {
            /*
            * solution 1: Array+IntRange, TLE, 30/42 test cases passed.
            * solution 2: two heap, minHeap and maxHeap, Time complexity:O(nlogn), Space complexity:O(n)
            * */
    
            //solution 2
            val list = ArrayList<Double>()
            for (i in nums.indices) {
                val num = nums[i]
                if (leftHeap.isEmpty() || num < leftHeap.peek()) {
                    leftHeap.offer(num)
                } else {
                    rightHeap.offer(num)
                }
                rebalance()
                //println("index-k+1:${i - k + 1}")
                //when current position is valid sub-array
                if (i - k + 1 >= 0) {
                    if (leftHeap.size == rightHeap.size) {
                        val left = leftHeap.peek().toDouble()
                        val right = rightHeap.peek().toDouble()
                        list.add((left + right) / 2)
                    } else {
                        list.add(leftHeap.peek().toDouble())
                    }
                    val elementToBeRemove = nums[i - k + 1]
                    /*
                    * keep two heap can combination to below format:
                    * [1  3  -1] -3  5  3  6  7: [1  3  -1]
                      1 [3  -1  -3] 5  3  6  7:  [3  -1  -3]
                      1  3 [-1  -3  5] 3  6  7:  [-1  -3  5]
                      1  3  -1 [-3  5  3] 6  7:  [-3  5  3]
                      1  3  -1  -3 [5  3  6] 7:  [5  3  6]
                       1  3  -1  -3  5 [3  6  7]:[3  6  7]
                    * */
                    if (elementToBeRemove <= leftHeap.peek()) {
                        leftHeap.remove(elementToBeRemove)
                    } else {
                        rightHeap.remove(elementToBeRemove)
                    }
                    //keep balance after heap operation
                    rebalance()
                }
            }
            return list.toDoubleArray()
    
            //solution 1
            /*val size = nums.size
            val list = ArrayList<Double>()
            if (size == 1) {
                list.add(nums[0].toDouble())
                //println(list)
                return list.toDoubleArray()
            }
            var right = k
            for (i in nums.indices) {
                val intRange = IntRange(i, right - 1)
                val subArray = nums.slice(intRange).sorted()
                right = i + k + 1
                if (subArray.size % 2 == 0) {
                    val index = subArray.size / 2
                    val index2 = index - 1
                    val sum = subArray[index].toDouble() + subArray[index2].toDouble()
                    val value = sum / 2
                    list.add(value)
                } else {
                    list.add(subArray[k/2].toDouble())
                }
                if (right > size) {
                    break
                }
            }
            return list.toDoubleArray()*/
        }
    
        //balance minHeap and maxHeap
        //the size of minHeap just can larger than the size fo maxHeap by 1
        private fun rebalance() {
            if (leftHeap.size < rightHeap.size) {
                leftHeap.offer(rightHeap.poll())
            } else if (leftHeap.size - rightHeap.size == 2) {
                rightHeap.offer(leftHeap.poll())
            }
        }
    }
  • 相关阅读:
    [Ceoi2016|BZOJ4936] Match
    下载/拷贝下来的压缩包打开内容为空解决方案
    [POI2012]OKR-A Horrible Poem
    [SNOI2017]礼物
    LuoguP3398 仓鼠找sugar
    转:看图说话Image Caption之评价指标、NIC(Neural Image Caption)模型和attention
    转:Cascade R-CNN,一个使你的检测更加准确的网络
    图像理解之物体检测object detection,模型rcnn/fastrcnn/fasterrcnn原理及概念
    深度残差网络
    转:图像分类、物体检测、物体分割、实例分割、语义分割
  • 原文地址:https://www.cnblogs.com/johnnyzhao/p/13237354.html
Copyright © 2011-2022 走看看