zoukankan      html  css  js  c++  java
  • 1725. Number Of Rectangles That Can Form The Largest Square

    package LeetCode_1725
    
    /**
     * 1725. Number Of Rectangles That Can Form The Largest Square
     * https://leetcode.com/problems/number-of-rectangles-that-can-form-the-largest-square/
     * You are given an array rectangles where rectangles[i] = [li, wi] represents the ith rectangle of length li and width wi.
    You can cut the ith rectangle to form a square with a side length of k if both k <= li and k <= wi.
    For example, if you have a rectangle [4,6], you can cut it to get a square with a side length of at most 4.
    Let maxLen be the side length of the largest square you can obtain from any of the given rectangles.
    Return the number of rectangles that can make a square with a side length of maxLen.
    
    Example 1:
    Input: rectangles = [[5,8],[3,9],[5,12],[16,5]]
    Output: 3
    Explanation: The largest squares you can get from each rectangle are of lengths [5,3,5,5].
    The largest possible square is of length 5, and you can get it out of 3 rectangles.
    
    Example 2:
    Input: rectangles = [[2,3],[3,7],[4,3],[3,7]]
    Output: 3
    
    Constraints:
    1. 1 <= rectangles.length <= 1000
    2. rectangles[i].length == 2
    3. 1 <= li, wi <= 10^9
    4. li != wi
     * */
    class Solution {
        /*
        * solution: Time:O(n), Space:O(1)
        * */
        fun countGoodRectangles(rectangles: Array<IntArray>): Int {
            var count = 0
            var globalMax = 0
            for (rectangle in rectangles) {
                //find out current max length of slide for square
                val currentMax = Math.min(rectangle[0], rectangle[1])
                if (currentMax > globalMax) {
                    count = 1
                    globalMax = currentMax
                } else if (currentMax == globalMax) {
                    count++
                }
            }
            return count
        }
    }
  • 相关阅读:
    MArkdown使用转
    吴恩达deep learning笔记。
    TCP状态转换图
    TCP关闭的四次握手
    SYN的中发送若干的TCP选项
    Ubuntu系统中切换root用户的命令,总忘了sudo
    logistic regression recap
    二分分类中的logistic回归(regression)
    UNIX下的网络族分类,IPv4和IPv6协议族
    11.8模拟赛
  • 原文地址:https://www.cnblogs.com/johnnyzhao/p/14291879.html
Copyright © 2011-2022 走看看