zoukankan      html  css  js  c++  java
  • 1725. Number Of Rectangles That Can Form The Largest Square

    package LeetCode_1725
    
    /**
     * 1725. Number Of Rectangles That Can Form The Largest Square
     * https://leetcode.com/problems/number-of-rectangles-that-can-form-the-largest-square/
     * You are given an array rectangles where rectangles[i] = [li, wi] represents the ith rectangle of length li and width wi.
    You can cut the ith rectangle to form a square with a side length of k if both k <= li and k <= wi.
    For example, if you have a rectangle [4,6], you can cut it to get a square with a side length of at most 4.
    Let maxLen be the side length of the largest square you can obtain from any of the given rectangles.
    Return the number of rectangles that can make a square with a side length of maxLen.
    
    Example 1:
    Input: rectangles = [[5,8],[3,9],[5,12],[16,5]]
    Output: 3
    Explanation: The largest squares you can get from each rectangle are of lengths [5,3,5,5].
    The largest possible square is of length 5, and you can get it out of 3 rectangles.
    
    Example 2:
    Input: rectangles = [[2,3],[3,7],[4,3],[3,7]]
    Output: 3
    
    Constraints:
    1. 1 <= rectangles.length <= 1000
    2. rectangles[i].length == 2
    3. 1 <= li, wi <= 10^9
    4. li != wi
     * */
    class Solution {
        /*
        * solution: Time:O(n), Space:O(1)
        * */
        fun countGoodRectangles(rectangles: Array<IntArray>): Int {
            var count = 0
            var globalMax = 0
            for (rectangle in rectangles) {
                //find out current max length of slide for square
                val currentMax = Math.min(rectangle[0], rectangle[1])
                if (currentMax > globalMax) {
                    count = 1
                    globalMax = currentMax
                } else if (currentMax == globalMax) {
                    count++
                }
            }
            return count
        }
    }
  • 相关阅读:
    JDBC中DAO+service设计思想
    Ajax的简单基础
    Ajax的简单基础
    Jquery选择器总结二
    Jquery选择器总结二
    Jquery选择器总结一
    Jquery选择器总结一
    amazon的新算法《大数据时代:亚马逊“预判发货”,顾客未动包裹先行》
    wget命令检测端口是否监听
    KUNG FU PANDA
  • 原文地址:https://www.cnblogs.com/johnnyzhao/p/14291879.html
Copyright © 2011-2022 走看看