zoukankan      html  css  js  c++  java
  • 1725. Number Of Rectangles That Can Form The Largest Square

    package LeetCode_1725
    
    /**
     * 1725. Number Of Rectangles That Can Form The Largest Square
     * https://leetcode.com/problems/number-of-rectangles-that-can-form-the-largest-square/
     * You are given an array rectangles where rectangles[i] = [li, wi] represents the ith rectangle of length li and width wi.
    You can cut the ith rectangle to form a square with a side length of k if both k <= li and k <= wi.
    For example, if you have a rectangle [4,6], you can cut it to get a square with a side length of at most 4.
    Let maxLen be the side length of the largest square you can obtain from any of the given rectangles.
    Return the number of rectangles that can make a square with a side length of maxLen.
    
    Example 1:
    Input: rectangles = [[5,8],[3,9],[5,12],[16,5]]
    Output: 3
    Explanation: The largest squares you can get from each rectangle are of lengths [5,3,5,5].
    The largest possible square is of length 5, and you can get it out of 3 rectangles.
    
    Example 2:
    Input: rectangles = [[2,3],[3,7],[4,3],[3,7]]
    Output: 3
    
    Constraints:
    1. 1 <= rectangles.length <= 1000
    2. rectangles[i].length == 2
    3. 1 <= li, wi <= 10^9
    4. li != wi
     * */
    class Solution {
        /*
        * solution: Time:O(n), Space:O(1)
        * */
        fun countGoodRectangles(rectangles: Array<IntArray>): Int {
            var count = 0
            var globalMax = 0
            for (rectangle in rectangles) {
                //find out current max length of slide for square
                val currentMax = Math.min(rectangle[0], rectangle[1])
                if (currentMax > globalMax) {
                    count = 1
                    globalMax = currentMax
                } else if (currentMax == globalMax) {
                    count++
                }
            }
            return count
        }
    }
  • 相关阅读:
    JVisualVM简介与内存泄漏实战分析
    高并发性能提升和超卖的解决方案
    ehcache应用场景及集群同步(RMI)
    一台机器配置多个tomcat的实践经验
    事务范围数据库读写分离失败
    基于spring的数据库读写分离
    Zookeeper linux下使用
    Zookeeper集群
    Dubbo入门实例(二)
    Zookeeper安装与启动
  • 原文地址:https://www.cnblogs.com/johnnyzhao/p/14291879.html
Copyright © 2011-2022 走看看