zoukankan      html  css  js  c++  java
  • 313. Super Ugly Number

    package LeetCode_313
    
    import java.util.*
    import kotlin.collections.HashSet
    
    /**
     * 313. Super Ugly Number
     * https://leetcode.com/problems/super-ugly-number/
     * A super ugly number is a positive integer whose prime factors are in the array primes.
    Given an integer n and an array of integers primes, return the nth super ugly number.
    The nth super ugly number is guaranteed to fit in a 32-bit signed integer.
    
    Example 1:
    Input: n = 12, primes = [2,7,13,19]
    Output: 32
    Explanation: [1,2,4,7,8,13,14,16,19,26,28,32] is the sequence of the first 12 super ugly numbers given primes = [2,7,13,19].
    
    Example 2:
    Input: n = 1, primes = [2,3,5]
    Output: 1
    Explanation: 1 has no prime factors, therefore all of its prime factors are in the array primes = [2,3,5].
    
    Constraints:
    1. 1 <= n <= 106
    2. 1 <= primes.length <= 100
    3. 2 <= primes[i] <= 1000
    4. primes[i] is guaranteed to be a prime number.
    5. All the values of primes are unique and sorted in ascending order.
     * */
    class Solution {
        /*
        * solution: use priority queue to keep the nth ugly number, and use Long to Maintain the accuracy of new ugly number;
        * Time complexity: O(n log(n*k)), k is the size of primes;
        * Space complexity: O(n)
        * */
        fun nthSuperUglyNumber(n: Int, primes: IntArray): Int {
            if (n == 1) {
                return 1
            }
            val queue = PriorityQueue<Long>()
            val set = HashSet<Long>()
            var result = 1L
            queue.offer(result)
            set.add(result)
            for (prime in primes) {
                queue.offer(prime.toLong())
                set.add(prime.toLong())
            }
            for (i in 0 until n) {//log(n)
                result = queue.poll()//log(k)
                for (prime in primes) {
                    val multi:Long = prime.toLong() * result
                    //contains of set run in O(1) time, contains of queue run in O(n) time
                    if (!set.contains(multi)) {
                        set.add(multi)
                        queue.offer(multi)//log(k)
                    }
                }
            }
            return result.toInt()
        }
    }
  • 相关阅读:
    python的类的继承和多继承
    python的类访问控制、私有属性
    python的面向对象、类方法和静态方法
    python的序列化和反序列化
    python高阶函数、柯里化、装饰器、参数注解
    python函数参数、参数解构、作用域、递归及匿名函数
    python内置函数列表解析、生成器
    python内置函数字典(dict)
    python内置函数集合(set)
    定制自己的打印函数---进阶篇
  • 原文地址:https://www.cnblogs.com/johnnyzhao/p/15083738.html
Copyright © 2011-2022 走看看