zoukankan      html  css  js  c++  java
  • Data Preparation in Pandas

    Data Preparation in Pandas

    Data cleaning

    import pandas as pd
    
    import numpy as np
    
    string_data=pd.Series(['aardvark','artichoke',np.nan,'avocado']);string_data
    
    0     aardvark
    1    artichoke
    2          NaN
    3      avocado
    dtype: object
    
    string_data.isnull()
    
    0    False
    1    False
    2     True
    3    False
    dtype: bool
    
    string_data[2]
    
    nan
    
    from numpy import nan as NA
    
    data=pd.Series([1,NA,3.5,NA,7])
    
    data.dropna()
    
    0    1.0
    2    3.5
    4    7.0
    dtype: float64
    
    data[[False,True,True,False,False]]
    
    1    NaN
    2    3.5
    dtype: float64
    
    data[data.notnull()]
    
    0    1.0
    2    3.5
    4    7.0
    dtype: float64
    
    data=pd.DataFrame([[1,6.5,3],[1,NA,NA],[NA,NA,NA],[NA,6.5,3]]);data
    
    0 1 2
    0 1.0 6.5 3.0
    1 1.0 NaN NaN
    2 NaN NaN NaN
    3 NaN 6.5 3.0
    data.dropna()
    
    0 1 2
    0 1.0 6.5 3.0
    data.dropna(how='all')
    
    0 1 2
    0 1.0 6.5 3.0
    1 1.0 NaN NaN
    3 NaN 6.5 3.0
    data[4]=NA;data
    
    0 1 2 4
    0 1.0 6.5 3.0 NaN
    1 1.0 NaN NaN NaN
    2 NaN NaN NaN NaN
    3 NaN 6.5 3.0 NaN
    data.dropna(how='all',axis='columns')
    
    0 1 2
    0 1.0 6.5 3.0
    1 1.0 NaN NaN
    2 NaN NaN NaN
    3 NaN 6.5 3.0
    df=pd.DataFrame(np.random.randn(7,3))
    
    df
    
    0 1 2
    0 -1.744196 -0.281787 -0.963212
    1 -1.114174 0.024707 0.095524
    2 0.879205 -1.272202 -0.317218
    3 0.227725 -0.067809 0.609824
    4 -1.082470 -1.230476 -1.616135
    5 -1.218976 0.018245 -0.155761
    6 -0.607157 -0.641986 -0.406378
    help(np.random.randn)
    
    Help on built-in function randn:
    
    randn(...) method of mtrand.RandomState instance
        randn(d0, d1, ..., dn)
        
        Return a sample (or samples) from the "standard normal" distribution.
        
        If positive, int_like or int-convertible arguments are provided,
        `randn` generates an array of shape ``(d0, d1, ..., dn)``, filled
        with random floats sampled from a univariate "normal" (Gaussian)
        distribution of mean 0 and variance 1 (if any of the :math:`d_i` are
        floats, they are first converted to integers by truncation). A single
        float randomly sampled from the distribution is returned if no
        argument is provided.
        
        This is a convenience function.  If you want an interface that takes a
        tuple as the first argument, use `numpy.random.standard_normal` instead.
        
        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, should be all positive.
            If no argument is given a single Python float is returned.
        
        Returns
        -------
        Z : ndarray or float
            A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from
            the standard normal distribution, or a single such float if
            no parameters were supplied.
        
        See Also
        --------
        random.standard_normal : Similar, but takes a tuple as its argument.
        
        Notes
        -----
        For random samples from :math:`N(mu, sigma^2)`, use:
        
        ``sigma * np.random.randn(...) + mu``
        
        Examples
        --------
        >>> np.random.randn()
        2.1923875335537315 #random
        
        Two-by-four array of samples from N(3, 6.25):
        
        >>> 2.5 * np.random.randn(2, 4) + 3
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],  #random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]]) #random
    
    df
    
    0 1 2
    0 -1.744196 -0.281787 -0.963212
    1 -1.114174 0.024707 0.095524
    2 0.879205 -1.272202 -0.317218
    3 0.227725 -0.067809 0.609824
    4 -1.082470 -1.230476 -1.616135
    5 -1.218976 0.018245 -0.155761
    6 -0.607157 -0.641986 -0.406378
    df.iloc[:4,1]=NA;df
    
    0 1 2
    0 -1.744196 NaN -0.963212
    1 -1.114174 NaN 0.095524
    2 0.879205 NaN -0.317218
    3 0.227725 NaN 0.609824
    4 -1.082470 -1.230476 -1.616135
    5 -1.218976 0.018245 -0.155761
    6 -0.607157 -0.641986 -0.406378
    df.iloc[:2,2]=NA;df
    
    0 1 2
    0 -1.744196 NaN NaN
    1 -1.114174 NaN NaN
    2 0.879205 NaN -0.317218
    3 0.227725 NaN 0.609824
    4 -1.082470 -1.230476 -1.616135
    5 -1.218976 0.018245 -0.155761
    6 -0.607157 -0.641986 -0.406378
    df.dropna()
    
    0 1 2
    4 -1.082470 -1.230476 -1.616135
    5 -1.218976 0.018245 -0.155761
    6 -0.607157 -0.641986 -0.406378
    df.dropna(thresh=2)
    
    0 1 2
    2 0.879205 NaN -0.317218
    3 0.227725 NaN 0.609824
    4 -1.082470 -1.230476 -1.616135
    5 -1.218976 0.018245 -0.155761
    6 -0.607157 -0.641986 -0.406378
    df.fillna(0)
    
    0 1 2
    0 -1.744196 0.000000 0.000000
    1 -1.114174 0.000000 0.000000
    2 0.879205 0.000000 -0.317218
    3 0.227725 0.000000 0.609824
    4 -1.082470 -1.230476 -1.616135
    5 -1.218976 0.018245 -0.155761
    6 -0.607157 -0.641986 -0.406378
    df.fillna({1:0.5,2:0})
    
    0 1 2
    0 -1.744196 0.500000 0.000000
    1 -1.114174 0.500000 0.000000
    2 0.879205 0.500000 -0.317218
    3 0.227725 0.500000 0.609824
    4 -1.082470 -1.230476 -1.616135
    5 -1.218976 0.018245 -0.155761
    6 -0.607157 -0.641986 -0.406378
    df
    
    0 1 2
    0 -1.744196 NaN NaN
    1 -1.114174 NaN NaN
    2 0.879205 NaN -0.317218
    3 0.227725 NaN 0.609824
    4 -1.082470 -1.230476 -1.616135
    5 -1.218976 0.018245 -0.155761
    6 -0.607157 -0.641986 -0.406378
    df.fillna(0,inplace=True)
    
    df
    
    0 1 2
    0 -1.744196 0.000000 0.000000
    1 -1.114174 0.000000 0.000000
    2 0.879205 0.000000 -0.317218
    3 0.227725 0.000000 0.609824
    4 -1.082470 -1.230476 -1.616135
    5 -1.218976 0.018245 -0.155761
    6 -0.607157 -0.641986 -0.406378
    df=pd.DataFrame(np.random.randn(6,3))
    
    df.iloc[2:,1]=NA
    
    df.iloc[4:,2]=NA
    
    df
    
    0 1 2
    0 -0.970921 -1.311345 0.779965
    1 -0.352837 0.290834 -0.440396
    2 0.574406 NaN 2.034865
    3 0.088611 NaN -0.004141
    4 0.792289 NaN NaN
    5 0.668345 NaN NaN
    df.fillna(method='ffill')
    
    0 1 2
    0 -0.970921 -1.311345 0.779965
    1 -0.352837 0.290834 -0.440396
    2 0.574406 0.290834 2.034865
    3 0.088611 0.290834 -0.004141
    4 0.792289 0.290834 -0.004141
    5 0.668345 0.290834 -0.004141
    df
    
    0 1 2
    0 -0.970921 -1.311345 0.779965
    1 -0.352837 0.290834 -0.440396
    2 0.574406 NaN 2.034865
    3 0.088611 NaN -0.004141
    4 0.792289 NaN NaN
    5 0.668345 NaN NaN
    df.dropna()
    
    0 1 2
    0 -0.970921 -1.311345 0.779965
    1 -0.352837 0.290834 -0.440396
    df.dropna(thresh=2)
    
    0 1 2
    0 -0.970921 -1.311345 0.779965
    1 -0.352837 0.290834 -0.440396
    2 0.574406 NaN 2.034865
    3 0.088611 NaN -0.004141
    df.dropna(thresh=2,inplace=True)
    
    df
    
    0 1 2
    0 -0.970921 -1.311345 0.779965
    1 -0.352837 0.290834 -0.440396
    2 0.574406 NaN 2.034865
    3 0.088611 NaN -0.004141
    data=pd.DataFrame({'K1':['one','two']*3+['two'],'K2':[1,1,2,3,3,4,4]});data
    
    K1 K2
    0 one 1
    1 two 1
    2 one 2
    3 two 3
    4 one 3
    5 two 4
    6 two 4
    data.duplicated()
    
    0    False
    1    False
    2    False
    3    False
    4    False
    5    False
    6     True
    dtype: bool
    
    data.drop_duplicates()
    
    K1 K2
    0 one 1
    1 two 1
    2 one 2
    3 two 3
    4 one 3
    5 two 4
    data['v1']=range(7)
    
    data
    
    K1 K2 v1
    0 one 1 0
    1 two 1 1
    2 one 2 2
    3 two 3 3
    4 one 3 4
    5 two 4 5
    6 two 4 6
    data.drop_duplicates(['K1','K2'])
    
    K1 K2 v1
    0 one 1 0
    1 two 1 1
    2 one 2 2
    3 two 3 3
    4 one 3 4
    5 two 4 5
    df
    
    0 1 2
    0 -0.970921 -1.311345 0.779965
    1 -0.352837 0.290834 -0.440396
    2 0.574406 NaN 2.034865
    3 0.088611 NaN -0.004141
    data
    
    K1 K2 v1
    0 one 1 0
    1 two 1 1
    2 one 2 2
    3 two 3 3
    4 one 3 4
    5 two 4 5
    6 two 4 6
    data.drop_duplicates(['K1','K2'])
    
    K1 K2 v1
    0 one 1 0
    1 two 1 1
    2 one 2 2
    3 two 3 3
    4 one 3 4
    5 two 4 5
    
    

    Transforming Data Using a Function or Mapping

    import pandas as pd
    
    import numpy as np
    
    data=pd.DataFrame({'food':['bacon','pulled pork','bacon','pastrami','corned beef','Bacon','Pastrami','honey ham','nova lox'],
                      'ounces':[4,3,12,6,7.5,8,3,5,6]});data
    
    food ounces
    0 bacon 4.0
    1 pulled pork 3.0
    2 bacon 12.0
    3 pastrami 6.0
    4 corned beef 7.5
    5 Bacon 8.0
    6 Pastrami 3.0
    7 honey ham 5.0
    8 nova lox 6.0
    meat_to_animal={'bacon':'pig',
                   'pulled pork':'pig',
                   'pastrami':'cow',
                   'corned beef':'cow',
                   'honey ham':'pig',
                   'nova lox':'salmon'}
    
    pd.Series.str.lower
    
    <function pandas.core.strings._noarg_wrapper.<locals>.wrapper>
    
    • str.lower above is a Series method.
    lowercased=data['food'].str.lower()
    
    data['animal']=lowercased
    
    data
    
    food ounces animal
    0 bacon 4.0 bacon
    1 pulled pork 3.0 pulled pork
    2 bacon 12.0 bacon
    3 pastrami 6.0 pastrami
    4 corned beef 7.5 corned beef
    5 Bacon 8.0 bacon
    6 Pastrami 3.0 pastrami
    7 honey ham 5.0 honey ham
    8 nova lox 6.0 nova lox

    The map() method on a Series accepts a function or dict-like object containing a mapping.Using map() is a convenient way to perform element-wise transformations and other data cleaning related operations.

    data['animal']=lowercased.map(meat_to_animal);data
    
    food ounces animal
    0 bacon 4.0 pig
    1 pulled pork 3.0 pig
    2 bacon 12.0 pig
    3 pastrami 6.0 cow
    4 corned beef 7.5 cow
    5 Bacon 8.0 pig
    6 Pastrami 3.0 cow
    7 honey ham 5.0 pig
    8 nova lox 6.0 salmon

    We could also have passed a function that does all the work.Such as the following:

    data['food'].map(lambda x:meat_to_animal[x.lower()])
    
    0       pig
    1       pig
    2       pig
    3       cow
    4       cow
    5       pig
    6       cow
    7       pig
    8    salmon
    Name: food, dtype: object
    

    Replacing values

    data=pd.Series([1,-999,2,-999,-1000,3]);data
    
    0       1
    1    -999
    2       2
    3    -999
    4   -1000
    5       3
    dtype: int64
    
    data.replace(-999,np.nan) # Replcace one value with one value
    
    0       1.0
    1       NaN
    2       2.0
    3       NaN
    4   -1000.0
    5       3.0
    dtype: float64
    
    data.replace([-999,-1000],np.nan) # Replace multi-values with one value
    
    0    1.0
    1    NaN
    2    2.0
    3    NaN
    4    NaN
    5    3.0
    dtype: float64
    
    data.replace([-999,-1000],[np.nan,0])# Replace multi-values with multi-values
    
    0    1.0
    1    NaN
    2    2.0
    3    NaN
    4    0.0
    5    3.0
    dtype: float64
    
    data.replace({-999:np.nan,0-1000:0}) # dict can also be passed into replace method
    
    0    1.0
    1    NaN
    2    2.0
    3    NaN
    4    0.0
    5    3.0
    dtype: float64
    
    data1=pd.Series(['A','B','c',12])
    
    help(data1.str.replace)
    
    Help on method replace in module pandas.core.strings:
    
    replace(pat, repl, n=-1, case=True, flags=0) method of pandas.core.strings.StringMethods instance
        Replace occurrences of pattern/regex in the Series/Index with
        some other string. Equivalent to :meth:`str.replace` or
        :func:`re.sub`.
        
        Parameters
        ----------
        pat : string
            Character sequence or regular expression
        repl : string
            Replacement sequence
        n : int, default -1 (all)
            Number of replacements to make from start
        case : boolean, default True
            If True, case sensitive
        flags : int, default 0 (no flags)
            re module flags, e.g. re.IGNORECASE
        
        Returns
        -------
        replaced : Series/Index of objects
    

    Renaming Axis indexes

    data=pd.DataFrame(np.arange(12).reshape((3,4)),index=['Ohio','Colorado','New York'],columns=['One','Two','three','Four']);data
    
    One Two three Four
    Ohio 0 1 2 3
    Colorado 4 5 6 7
    New York 8 9 10 11
    data.index.map(lambda x:x[:4].upper())
    
    array(['OHIO', 'COLO', 'NEW '], dtype=object)
    
    data
    
    One Two three Four
    Ohio 0 1 2 3
    Colorado 4 5 6 7
    New York 8 9 10 11
    data.index=data.index.map(lambda x:x[:4].upper());data # Modify DataFrame in-place
    
    One Two three Four
    OHIO 0 1 2 3
    COLO 4 5 6 7
    NEW 8 9 10 11

    If you want to create a transformed version of a dataset without modifying the original,a useful method is rename().

    data
    
    One Two three Four
    OHIO 0 1 2 3
    COLO 4 5 6 7
    NEW 8 9 10 11
    data.rename(index=str.title,columns=str.upper)
    
    ONE TWO THREE FOUR
    Ohio 0 1 2 3
    Colo 4 5 6 7
    New 8 9 10 11
    data
    
    One Two three Four
    OHIO 0 1 2 3
    COLO 4 5 6 7
    NEW 8 9 10 11

    To modify dataset in-place,pass inplace=True.

    data.rename(index={'OHIO':'INDIANA'},inplace=True)
    
    data
    
    One Two three Four
    INDIANA 0 1 2 3
    COLO 4 5 6 7
    NEW 8 9 10 11

    Discretization and Binning

    help(pd.cut)
    
    Help on function cut in module pandas.tools.tile:
    
    cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False)
        Return indices of half-open bins to which each value of `x` belongs.
        
        Parameters
        ----------
        x : array-like
            Input array to be binned. It has to be 1-dimensional.
        bins : int or sequence of scalars
            If `bins` is an int, it defines the number of equal-width bins in the
            range of `x`. However, in this case, the range of `x` is extended
            by .1% on each side to include the min or max values of `x`. If
            `bins` is a sequence it defines the bin edges allowing for
            non-uniform bin width. No extension of the range of `x` is done in
            this case.
        right : bool, optional
            Indicates whether the bins include the rightmost edge or not. If
            right == True (the default), then the bins [1,2,3,4] indicate
            (1,2], (2,3], (3,4].
        labels : array or boolean, default None
            Used as labels for the resulting bins. Must be of the same length as
            the resulting bins. If False, return only integer indicators of the
            bins.
        retbins : bool, optional
            Whether to return the bins or not. Can be useful if bins is given
            as a scalar.
        precision : int
            The precision at which to store and display the bins labels
        include_lowest : bool
            Whether the first interval should be left-inclusive or not.
        
        Returns
        -------
        out : Categorical or Series or array of integers if labels is False
            The return type (Categorical or Series) depends on the input: a Series
            of type category if input is a Series else Categorical. Bins are
            represented as categories when categorical data is returned.
        bins : ndarray of floats
            Returned only if `retbins` is True.
        
        Notes
        -----
        The `cut` function can be useful for going from a continuous variable to
        a categorical variable. For example, `cut` could convert ages to groups
        of age ranges.
        
        Any NA values will be NA in the result.  Out of bounds values will be NA in
        the resulting Categorical object
        
        
        Examples
        --------
        >>> pd.cut(np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1]), 3, retbins=True)
        ([(0.191, 3.367], (0.191, 3.367], (0.191, 3.367], (3.367, 6.533],
          (6.533, 9.7], (0.191, 3.367]]
        Categories (3, object): [(0.191, 3.367] < (3.367, 6.533] < (6.533, 9.7]],
        array([ 0.1905    ,  3.36666667,  6.53333333,  9.7       ]))
        >>> pd.cut(np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1]), 3,
                   labels=["good","medium","bad"])
        [good, good, good, medium, bad, good]
        Categories (3, object): [good < medium < bad]
        >>> pd.cut(np.ones(5), 4, labels=False)
        array([1, 1, 1, 1, 1], dtype=int64)
    
    ages=[20,22,25,27,21,23,37,31,61,45,41,32]
    
    bins=[18,25,35,60,100]
    
    cats=pd.cut(ages,bins)
    
    cats
    
    [(18, 25], (18, 25], (18, 25], (25, 35], (18, 25], ..., (25, 35], (60, 100], (35, 60], (35, 60], (25, 35]]
    Length: 12
    Categories (4, object): [(18, 25] < (25, 35] < (35, 60] < (60, 100]]
    
    len(ages)
    
    12
    
    type(cats)
    
    pandas.core.categorical.Categorical
    
      cats.codes
    
    array([0, 0, 0, 1, 0, 0, 2, 1, 3, 2, 2, 1], dtype=int8)
    
    cats.categories
    
    Index(['(18, 25]', '(25, 35]', '(35, 60]', '(60, 100]'], dtype='object')
    
    type(pd.value_counts(cats))
    
    pandas.core.series.Series
    
    help(pd.value_counts)
    
    Help on function value_counts in module pandas.core.algorithms:
    
    value_counts(values, sort=True, ascending=False, normalize=False, bins=None, dropna=True)
        Compute a histogram of the counts of non-null values.
        
        Parameters
        ----------
        values : ndarray (1-d)
        sort : boolean, default True
            Sort by values
        ascending : boolean, default False
            Sort in ascending order
        normalize: boolean, default False
            If True then compute a relative histogram
        bins : integer, optional
            Rather than count values, group them into half-open bins,
            convenience for pd.cut, only works with numeric data
        dropna : boolean, default True
            Don't include counts of NaN
        
        Returns
        -------
        value_counts : Series
    
    pd.value_counts([1,1,2,3,4,45,5])
    
    1     2
    5     1
    45    1
    4     1
    3     1
    2     1
    dtype: int64
    
    pd.value_counts(cats)
    
    (18, 25]     5
    (35, 60]     3
    (25, 35]     3
    (60, 100]    1
    dtype: int64
    

    You can also pass your bin names by passing a list or array to the labels option.

    group_names=['Youth','YoungAdult','MiddleAged','Senior']
    
    pd.cut(ages,bins,labels=group_names) # bin is a reserved key.
    
    [Youth, Youth, Youth, YoungAdult, Youth, ..., YoungAdult, Senior, MiddleAged, MiddleAged, YoungAdult]
    Length: 12
    Categories (4, object): [Youth < YoungAdult < MiddleAged < Senior]
    
    help(bin)
    
    Help on built-in function bin in module builtins:
    
    bin(number, /)
        Return the binary representation of an integer.
        
        >>> bin(2796202)
        '0b1010101010101010101010'
    
    bin(2)
    
    '0b10'
    
    • bins can also be an integer, and in that case, the category will be equal-space.
    data=np.random.rand(20)
    
    pd.cut(data,4,precision=2)# precision limits the decimal precision to two digits.
    
    [(0.25, 0.5], (0.25, 0.5], (0.25, 0.5], (0.75, 1], (0.5, 0.75], ..., (0.0024, 0.25], (0.25, 0.5], (0.25, 0.5], (0.25, 0.5], (0.0024, 0.25]]
    Length: 20
    Categories (4, object): [(0.0024, 0.25] < (0.25, 0.5] < (0.5, 0.75] < (0.75, 1]]
    
    • A closely related function,qcut,bins the data based on sample quantiles.Using cut will not usually result in each bin having the same number of data points.
    data=np.random.randn(1000)
    
    cats=pd.qcut(data,4);cats
    
    [(0.0211, 0.689], (0.689, 3.225], (-0.62, 0.0211], (0.689, 3.225], (0.689, 3.225], ..., (0.689, 3.225], [-3.401, -0.62], (-0.62, 0.0211], (-0.62, 0.0211], (-0.62, 0.0211]]
    Length: 1000
    Categories (4, object): [[-3.401, -0.62] < (-0.62, 0.0211] < (0.0211, 0.689] < (0.689, 3.225]]
    
    pd.value_counts(cats)
    
    (0.689, 3.225]     250
    (0.0211, 0.689]    250
    (-0.62, 0.0211]    250
    [-3.401, -0.62]    250
    dtype: int64
    
    cats1=pd.qcut(data,[0,0.1,0.5,0.9,1])
    
    pd.value_counts(cats1)
    
    (0.0211, 1.33]      400
    (-1.201, 0.0211]    400
    (1.33, 3.225]       100
    [-3.401, -1.201]    100
    dtype: int64
    

    Detecting and filtering Outliers

    data=pd.DataFrame(np.random.randn(1000,4))
    
    data.describe()
    
    0 1 2 3
    count 1000.000000 1000.000000 1000.000000 1000.000000
    mean 0.002634 -0.038263 0.001432 -0.040628
    std 0.981600 0.996856 1.021248 1.030675
    min -3.400618 -3.427137 -4.309211 -4.375632
    25% -0.656369 -0.713371 -0.681777 -0.754702
    50% -0.005199 -0.026878 -0.019116 0.005450
    75% 0.649159 0.613807 0.690614 0.625859
    max 3.408137 3.171119 3.784272 2.992607
    col=data[2]
    
    col[np.abs(col)>3]
    
    322    3.059163
    431   -3.089013
    648   -4.309211
    653    3.784272
    834    3.007481
    Name: 2, dtype: float64
    
    help(pd.DataFrame.any)
    
    Help on function any in module pandas.core.frame:
    
    any(self, axis=None, bool_only=None, skipna=None, level=None, **kwargs)
        Return whether any element is True over requested axis
        
        Parameters
        ----------
        axis : {index (0), columns (1)}
        skipna : boolean, default True
            Exclude NA/null values. If an entire row/column is NA, the result
            will be NA
        level : int or level name, default None
            If the axis is a MultiIndex (hierarchical), count along a
            particular level, collapsing into a Series
        bool_only : boolean, default None
            Include only boolean columns. If None, will attempt to use everything,
            then use only boolean data. Not implemented for Series.
        
        Returns
        -------
        any : Series or DataFrame (if level specified)
    
    (abs(data)>3) ==(np.abs(data)>3)
    
    0 1 2 3
    0 True True True True
    1 True True True True
    2 True True True True
    3 True True True True
    4 True True True True
    5 True True True True
    6 True True True True
    7 True True True True
    8 True True True True
    9 True True True True
    10 True True True True
    11 True True True True
    12 True True True True
    13 True True True True
    14 True True True True
    15 True True True True
    16 True True True True
    17 True True True True
    18 True True True True
    19 True True True True
    20 True True True True
    21 True True True True
    22 True True True True
    23 True True True True
    24 True True True True
    25 True True True True
    26 True True True True
    27 True True True True
    28 True True True True
    29 True True True True
    ... ... ... ... ...
    970 True True True True
    971 True True True True
    972 True True True True
    973 True True True True
    974 True True True True
    975 True True True True
    976 True True True True
    977 True True True True
    978 True True True True
    979 True True True True
    980 True True True True
    981 True True True True
    982 True True True True
    983 True True True True
    984 True True True True
    985 True True True True
    986 True True True True
    987 True True True True
    988 True True True True
    989 True True True True
    990 True True True True
    991 True True True True
    992 True True True True
    993 True True True True
    994 True True True True
    995 True True True True
    996 True True True True
    997 True True True True
    998 True True True True
    999 True True True True

    1000 rows × 4 columns

    data[(np.abs(data)>3).any(1)]
    
    0 1 2 3
    59 -3.400618 0.342563 0.649758 -2.629268
    274 1.264869 -3.427137 0.991494 -0.906788
    322 2.714233 -1.239436 3.059163 0.318054
    431 -0.376058 -0.713530 -3.089013 -0.791221
    460 0.411801 -0.323974 0.301139 -3.051362
    465 0.054043 -1.046532 2.054820 -4.375632
    587 0.857067 -3.162763 0.137409 -1.327873
    648 -0.323629 0.325867 -4.309211 -0.477572
    653 0.171840 0.148702 3.784272 0.269508
    678 0.303109 3.171119 0.854269 0.489537
    834 1.651314 1.303992 3.007481 0.494971
    841 3.408137 0.869413 -0.111245 1.306775
    960 -0.302520 -3.118445 2.116509 0.003669
    np.sign([0,0.3,-0.3,20,-90])
    
    array([ 0.,  1., -1.,  1., -1.])
    
    data[np.abs(data)>3]=np.sign(data)*3
    
    np.sign(data)*3
    
    0 1 2 3
    0 -3.0 -3.0 -3.0 3.0
    1 -3.0 3.0 3.0 -3.0
    2 3.0 3.0 3.0 3.0
    3 -3.0 -3.0 -3.0 -3.0
    4 3.0 -3.0 3.0 -3.0
    5 -3.0 -3.0 -3.0 3.0
    6 -3.0 -3.0 3.0 3.0
    7 3.0 3.0 3.0 3.0
    8 -3.0 3.0 -3.0 3.0
    9 3.0 -3.0 3.0 3.0
    10 -3.0 3.0 -3.0 -3.0
    11 -3.0 3.0 3.0 3.0
    12 3.0 3.0 3.0 3.0
    13 3.0 -3.0 3.0 3.0
    14 3.0 3.0 3.0 3.0
    15 3.0 3.0 3.0 -3.0
    16 3.0 -3.0 3.0 3.0
    17 3.0 -3.0 -3.0 3.0
    18 -3.0 3.0 3.0 3.0
    19 3.0 3.0 3.0 -3.0
    20 -3.0 3.0 3.0 3.0
    21 3.0 3.0 -3.0 3.0
    22 -3.0 3.0 -3.0 -3.0
    23 3.0 3.0 -3.0 -3.0
    24 3.0 -3.0 3.0 3.0
    25 -3.0 -3.0 -3.0 3.0
    26 3.0 3.0 -3.0 -3.0
    27 3.0 -3.0 -3.0 -3.0
    28 3.0 -3.0 -3.0 3.0
    29 3.0 3.0 -3.0 -3.0
    ... ... ... ... ...
    970 -3.0 -3.0 3.0 -3.0
    971 -3.0 3.0 -3.0 -3.0
    972 -3.0 3.0 -3.0 3.0
    973 3.0 3.0 3.0 3.0
    974 3.0 -3.0 -3.0 3.0
    975 -3.0 3.0 -3.0 3.0
    976 -3.0 3.0 3.0 3.0
    977 -3.0 -3.0 3.0 -3.0
    978 3.0 -3.0 -3.0 -3.0
    979 -3.0 3.0 -3.0 3.0
    980 -3.0 -3.0 -3.0 3.0
    981 3.0 3.0 3.0 -3.0
    982 -3.0 3.0 -3.0 -3.0
    983 -3.0 3.0 -3.0 -3.0
    984 3.0 3.0 -3.0 -3.0
    985 3.0 3.0 -3.0 3.0
    986 -3.0 -3.0 -3.0 3.0
    987 -3.0 3.0 -3.0 -3.0
    988 3.0 3.0 -3.0 -3.0
    989 3.0 -3.0 -3.0 3.0
    990 3.0 -3.0 3.0 -3.0
    991 3.0 -3.0 3.0 3.0
    992 -3.0 3.0 -3.0 -3.0
    993 -3.0 3.0 -3.0 3.0
    994 3.0 -3.0 -3.0 -3.0
    995 3.0 -3.0 -3.0 -3.0
    996 3.0 -3.0 3.0 -3.0
    997 -3.0 -3.0 -3.0 -3.0
    998 3.0 3.0 -3.0 -3.0
    999 3.0 3.0 3.0 -3.0

    1000 rows × 4 columns

    data
    
    0 1 2 3
    0 -0.564062 -0.887969 -0.854782 0.107613
    1 -1.364165 1.337851 1.671698 -0.814129
    2 0.765877 1.916774 0.441002 2.128419
    3 -0.581957 -1.024641 -1.983024 -2.757392
    4 0.778034 -1.375845 0.044277 -1.037062
    5 -0.796683 -0.540663 -0.120198 0.003503
    6 -0.708554 -0.105414 1.037527 0.826310
    7 1.233856 1.217529 1.097430 0.842746
    8 -0.201433 0.249823 -1.620147 0.436595
    9 1.328493 -0.396323 1.927629 1.615656
    10 -0.560207 0.252996 -0.151543 -0.667813
    11 -1.729057 1.144087 1.087689 0.520086
    12 0.704758 1.707940 0.720834 0.447245
    13 1.024834 -0.217376 1.340304 0.176801
    14 0.075745 1.430761 0.193627 0.191701
    15 0.536566 0.047559 1.715175 -1.115074
    16 2.803965 -0.465377 1.127140 1.417856
    17 0.677525 -1.091631 -0.572231 0.241533
    18 -1.172228 1.049830 0.266288 0.836902
    19 0.930699 0.379891 1.637741 -1.770379
    20 -0.749769 0.711326 1.591292 1.099071
    21 1.550585 1.276488 -0.214484 0.195340
    22 -0.289236 1.882439 -0.275263 -0.247316
    23 0.688167 0.357913 -1.675828 -0.305840
    24 1.255532 -1.802804 0.889900 0.864982
    25 -1.391447 -0.291022 -0.190022 0.540653
    26 0.435101 2.444416 -1.235937 -0.428450
    27 0.165456 -1.091942 -1.560662 -0.739435
    28 1.469728 -0.123806 -2.071746 2.574603
    29 1.287949 1.278130 -0.825906 -1.852465
    ... ... ... ... ...
    970 -0.379102 -0.778606 2.213794 -0.062573
    971 -1.108557 0.723650 -2.436704 -0.068733
    972 -0.518995 0.455508 -0.217321 1.363977
    973 0.444636 1.625221 0.222103 1.236397
    974 0.699354 -2.076747 -0.454499 0.383902
    975 -1.759718 0.717117 -0.077413 1.698893
    976 -1.230778 0.222673 0.151731 0.174875
    977 -0.575290 -0.316810 0.380077 -0.048428
    978 1.906133 -0.861802 -0.026937 -2.865641
    979 -0.134489 0.607949 -0.821089 0.831827
    980 -0.058894 -0.707492 -0.273980 0.129724
    981 2.288519 0.149683 0.580679 -0.055218
    982 -0.280748 0.861358 -0.254339 -0.596723
    983 -1.322965 0.323534 -0.585862 -1.316894
    984 0.793711 0.165646 -0.212855 -1.752453
    985 0.310908 0.758156 -0.040923 0.538293
    986 -0.589173 -1.688947 -0.501485 0.019880
    987 -0.111807 1.007026 -0.853133 -0.249211
    988 0.601993 0.690953 -1.168277 -0.516737
    989 1.319895 -0.046141 -0.680194 1.443361
    990 1.839785 -0.480675 0.056481 -0.097993
    991 2.590916 -0.367057 1.110105 0.130826
    992 -0.108846 1.717209 -0.580895 -0.985869
    993 -1.152810 0.390732 -0.104866 1.553947
    994 1.721177 -0.088994 -0.565308 -1.602808
    995 0.922409 -0.027923 -1.258001 -1.933848
    996 0.647699 -0.089378 1.455509 -0.598519
    997 -1.590236 -0.544202 -0.764923 -0.329425
    998 0.969542 0.106538 -0.188919 -1.474017
    999 0.235337 0.232514 0.113181 -1.403455

    1000 rows × 4 columns

    np.sign(data).head(10) # return the first 10 rows.
    
    0 1 2 3
    0 -1.0 -1.0 -1.0 1.0
    1 -1.0 1.0 1.0 -1.0
    2 1.0 1.0 1.0 1.0
    3 -1.0 -1.0 -1.0 -1.0
    4 1.0 -1.0 1.0 -1.0
    5 -1.0 -1.0 -1.0 1.0
    6 -1.0 -1.0 1.0 1.0
    7 1.0 1.0 1.0 1.0
    8 -1.0 1.0 -1.0 1.0
    9 1.0 -1.0 1.0 1.0

    Permutation and random sample

    df=pd.DataFrame(np.arange(20).reshape((5,4)))
    
    sampler=np.random.permutation(5);sampler
    
    array([4, 3, 1, 2, 0])
    
    df.take(sampler)
    
    0 1 2 3
    4 16 17 18 19
    3 12 13 14 15
    1 4 5 6 7
    2 8 9 10 11
    0 0 1 2 3
    df.sample(n=4)
    
    0 1 2 3
    2 8 9 10 11
    0 0 1 2 3
    1 4 5 6 7
    4 16 17 18 19
    df.sample(n=10,replace=True) # replace allows repeat choices.
    
    0 1 2 3
    1 4 5 6 7
    2 8 9 10 11
    1 4 5 6 7
    2 8 9 10 11
    0 0 1 2 3
    3 12 13 14 15
    3 12 13 14 15
    2 8 9 10 11
    0 0 1 2 3
    4 16 17 18 19
    choices=pd.Series([5,7,-1,6,4])
    
    choices.sample(n=10,replace=True)
    
    2   -1
    4    4
    1    7
    0    5
    0    5
    3    6
    4    4
    2   -1
    1    7
    1    7
    dtype: int64
    

    Computing indicator/Dummy variables

    df=pd.DataFrame({'Key':['b','b','a','c','a','b'],'data1':range(6)});df
    
    Key data1
    0 b 0
    1 b 1
    2 a 2
    3 c 3
    4 a 4
    5 b 5
    pd.get_dummies(df['Key'])
    
    a b c
    0 0 1 0
    1 0 1 0
    2 1 0 0
    3 0 0 1
    4 1 0 0
    5 0 1 0
    pd.get_dummies(df['Key'],prefix='key')
    
    key_a key_b key_c
    0 0 1 0
    1 0 1 0
    2 1 0 0
    3 0 0 1
    4 1 0 0
    5 0 1 0
    df[['data1']]
    
    data1
    0 0
    1 1
    2 2
    3 3
    4 4
    5 5
    df['data1']
    
    0    0
    1    1
    2    2
    3    3
    4    4
    5    5
    Name: data1, dtype: int32
    
    • so the difference between df[['data1']] and df['data1'] is apparent, the former one returns DataFrame,the latter one returns Series.
    
    
    ##### 愿你一寸一寸地攻城略地,一点一点地焕然一新 #####
  • 相关阅读:
    Java实现 蓝桥杯VIP 算法提高 选择排序
    Java实现 蓝桥杯VIP 算法提高 选择排序
    Java实现 蓝桥杯VIP 算法提高 选择排序
    QT中的SOCKET编程
    代理Delegate的小应用(使用setModelData设置下拉日期对话框)
    360企业云盘需求调研,包括定价
    大神为你分析 Go、Java、C 等主流编程语言(Go可以替代Java,而且最小化程序员的工作量,学习比较容易)
    VS 查看是否有内存泄露的方法
    SpringMVC之 数据绑定-1
    动画操作 (Applying Animations) ngAnimate12
  • 原文地址:https://www.cnblogs.com/johnyang/p/12712259.html
Copyright © 2011-2022 走看看